Cargando…

Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals

Lead-halide perovskite nanocrystals (NCs) are attractive nano-building blocks for photovoltaics and optoelectronic devices as well as quantum light sources. Such developments require a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structur...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Lei, Tamarat, Philippe, Lounis, Brahim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074593/
https://www.ncbi.nlm.nih.gov/pubmed/33924196
http://dx.doi.org/10.3390/nano11041058
_version_ 1783684381170204672
author Hou, Lei
Tamarat, Philippe
Lounis, Brahim
author_facet Hou, Lei
Tamarat, Philippe
Lounis, Brahim
author_sort Hou, Lei
collection PubMed
description Lead-halide perovskite nanocrystals (NCs) are attractive nano-building blocks for photovoltaics and optoelectronic devices as well as quantum light sources. Such developments require a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structure has long been debated. In this review, we give an overview of recent magneto-optical spectroscopic studies revealing the entire excitonic fine structure and relaxation mechanisms in these materials, using a single-NC approach to get rid of their inhomogeneities in morphology and crystal structure. We highlight the prominent role of the electron-hole exchange interaction in the order and splitting of the bright triplet and dark singlet exciton sublevels and discuss the effects of size, shape anisotropy and dielectric screening on the fine structure. The spectral and temporal manifestations of thermal mixing between bright and dark excitons allows extracting the specific nature and strength of the exciton–phonon coupling, which provides an explanation for their remarkably bright photoluminescence at low temperature although the ground exciton state is optically inactive. We also decipher the spectroscopic characteristics of other charge complexes whose recombination contributes to photoluminescence. With the rich knowledge gained from these experiments, we provide some perspectives on perovskite NCs as quantum light sources.
format Online
Article
Text
id pubmed-8074593
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80745932021-04-27 Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals Hou, Lei Tamarat, Philippe Lounis, Brahim Nanomaterials (Basel) Review Lead-halide perovskite nanocrystals (NCs) are attractive nano-building blocks for photovoltaics and optoelectronic devices as well as quantum light sources. Such developments require a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structure has long been debated. In this review, we give an overview of recent magneto-optical spectroscopic studies revealing the entire excitonic fine structure and relaxation mechanisms in these materials, using a single-NC approach to get rid of their inhomogeneities in morphology and crystal structure. We highlight the prominent role of the electron-hole exchange interaction in the order and splitting of the bright triplet and dark singlet exciton sublevels and discuss the effects of size, shape anisotropy and dielectric screening on the fine structure. The spectral and temporal manifestations of thermal mixing between bright and dark excitons allows extracting the specific nature and strength of the exciton–phonon coupling, which provides an explanation for their remarkably bright photoluminescence at low temperature although the ground exciton state is optically inactive. We also decipher the spectroscopic characteristics of other charge complexes whose recombination contributes to photoluminescence. With the rich knowledge gained from these experiments, we provide some perspectives on perovskite NCs as quantum light sources. MDPI 2021-04-20 /pmc/articles/PMC8074593/ /pubmed/33924196 http://dx.doi.org/10.3390/nano11041058 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Hou, Lei
Tamarat, Philippe
Lounis, Brahim
Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
title Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
title_full Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
title_fullStr Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
title_full_unstemmed Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
title_short Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
title_sort revealing the exciton fine structure in lead halide perovskite nanocrystals
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074593/
https://www.ncbi.nlm.nih.gov/pubmed/33924196
http://dx.doi.org/10.3390/nano11041058
work_keys_str_mv AT houlei revealingtheexcitonfinestructureinleadhalideperovskitenanocrystals
AT tamaratphilippe revealingtheexcitonfinestructureinleadhalideperovskitenanocrystals
AT lounisbrahim revealingtheexcitonfinestructureinleadhalideperovskitenanocrystals