Cargando…
Ubiquitous Health Technology Management (uHTM): Using Machine Learning Algorithms to Support Predictive Health Technology Management Programs
The COVID-19 pandemic increased the need for distributed and ubiquitous health technology management. The eminent risk of Sars-CoV-2 contamination when visiting a health care establishment requires an efficient allocation of the technical team. The equipment problems should be quickly identified and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074699/ http://dx.doi.org/10.1007/s41050-021-00030-0 |
_version_ | 1783684400171450368 |
---|---|
author | Peixoto, Rafael Soares Filho, Reginaldo Martins, Juliano Garcia, Renato |
author_facet | Peixoto, Rafael Soares Filho, Reginaldo Martins, Juliano Garcia, Renato |
author_sort | Peixoto, Rafael |
collection | PubMed |
description | The COVID-19 pandemic increased the need for distributed and ubiquitous health technology management. The eminent risk of Sars-CoV-2 contamination when visiting a health care establishment requires an efficient allocation of the technical team. The equipment problems should be quickly identified and fixed to keep the facility working at its full condition. This article presents a solution to perform remote real-time analysis of primary health care technology behavior, detecting and diagnosing the failures to create predictive maintenance plans. The project uses feature engineering to adapt regular machine learning algorithms to multiclass classification of time series data. The methodology was applied to a dental air compressor. It includes data collection, analysis, and exhibition. The model verified the IBM Watson and the Microsoft Azure Machine Learning Studio with the algorithms of neural networks, logistic regression, decision jungle, and decision forest, which was the most suitable one. The transformation performed in the data considered the influence of time in the read values to obtain a more efficient result in the platform. The solution integrated data collected by the sensors with the cloud using an Internet of Things architecture, a web service, and python scripts to exhibit the outcomes on the computer screen. Therefore, the model performs notification and identification of health technology failures, supporting the decision-making process of ubiquitous management in clinical engineering. |
format | Online Article Text |
id | pubmed-8074699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-80746992021-04-27 Ubiquitous Health Technology Management (uHTM): Using Machine Learning Algorithms to Support Predictive Health Technology Management Programs Peixoto, Rafael Soares Filho, Reginaldo Martins, Juliano Garcia, Renato Polytechnica Original Article The COVID-19 pandemic increased the need for distributed and ubiquitous health technology management. The eminent risk of Sars-CoV-2 contamination when visiting a health care establishment requires an efficient allocation of the technical team. The equipment problems should be quickly identified and fixed to keep the facility working at its full condition. This article presents a solution to perform remote real-time analysis of primary health care technology behavior, detecting and diagnosing the failures to create predictive maintenance plans. The project uses feature engineering to adapt regular machine learning algorithms to multiclass classification of time series data. The methodology was applied to a dental air compressor. It includes data collection, analysis, and exhibition. The model verified the IBM Watson and the Microsoft Azure Machine Learning Studio with the algorithms of neural networks, logistic regression, decision jungle, and decision forest, which was the most suitable one. The transformation performed in the data considered the influence of time in the read values to obtain a more efficient result in the platform. The solution integrated data collected by the sensors with the cloud using an Internet of Things architecture, a web service, and python scripts to exhibit the outcomes on the computer screen. Therefore, the model performs notification and identification of health technology failures, supporting the decision-making process of ubiquitous management in clinical engineering. Springer International Publishing 2021-04-26 2021 /pmc/articles/PMC8074699/ http://dx.doi.org/10.1007/s41050-021-00030-0 Text en © Escola Politécnica - Universidade de São Paulo 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Article Peixoto, Rafael Soares Filho, Reginaldo Martins, Juliano Garcia, Renato Ubiquitous Health Technology Management (uHTM): Using Machine Learning Algorithms to Support Predictive Health Technology Management Programs |
title | Ubiquitous Health Technology Management (uHTM): Using Machine Learning Algorithms to Support Predictive Health Technology Management Programs |
title_full | Ubiquitous Health Technology Management (uHTM): Using Machine Learning Algorithms to Support Predictive Health Technology Management Programs |
title_fullStr | Ubiquitous Health Technology Management (uHTM): Using Machine Learning Algorithms to Support Predictive Health Technology Management Programs |
title_full_unstemmed | Ubiquitous Health Technology Management (uHTM): Using Machine Learning Algorithms to Support Predictive Health Technology Management Programs |
title_short | Ubiquitous Health Technology Management (uHTM): Using Machine Learning Algorithms to Support Predictive Health Technology Management Programs |
title_sort | ubiquitous health technology management (uhtm): using machine learning algorithms to support predictive health technology management programs |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074699/ http://dx.doi.org/10.1007/s41050-021-00030-0 |
work_keys_str_mv | AT peixotorafael ubiquitoushealthtechnologymanagementuhtmusingmachinelearningalgorithmstosupportpredictivehealthtechnologymanagementprograms AT soaresfilhoreginaldo ubiquitoushealthtechnologymanagementuhtmusingmachinelearningalgorithmstosupportpredictivehealthtechnologymanagementprograms AT martinsjuliano ubiquitoushealthtechnologymanagementuhtmusingmachinelearningalgorithmstosupportpredictivehealthtechnologymanagementprograms AT garciarenato ubiquitoushealthtechnologymanagementuhtmusingmachinelearningalgorithmstosupportpredictivehealthtechnologymanagementprograms |