Cargando…
Reducing the Impact of Confounding Factors on Skin Cancer Classification via Image Segmentation: Technical Model Study
BACKGROUND: Studies have shown that artificial intelligence achieves similar or better performance than dermatologists in specific dermoscopic image classification tasks. However, artificial intelligence is susceptible to the influence of confounding factors within images (eg, skin markings), which...
Autores principales: | Maron, Roman C, Hekler, Achim, Krieghoff-Henning, Eva, Schmitt, Max, Schlager, Justin G, Utikal, Jochen S, Brinker, Titus J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074854/ https://www.ncbi.nlm.nih.gov/pubmed/33764307 http://dx.doi.org/10.2196/21695 |
Ejemplares similares
-
Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective
por: Jutzi, Tanja B., et al.
Publicado: (2020) -
Effects of Label Noise on Deep Learning-Based Skin Cancer Classification
por: Hekler, Achim, et al.
Publicado: (2020) -
Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
por: Höhn, Julia, et al.
Publicado: (2021) -
Artificial Intelligence and Its Effect on Dermatologists’ Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study
por: Maron, Roman C, et al.
Publicado: (2020) -
Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
por: Brinker, Titus Josef, et al.
Publicado: (2018)