Cargando…

Gazing down increases standing and walking postural steadiness

When walking on an uneven surface or complex terrain, humans tend to gaze downward. This behaviour is usually interpreted as an attempt to acquire useful information to guide locomotion. Visual information, however, is not used exclusively for guiding locomotion; it is also useful for postural contr...

Descripción completa

Detalles Bibliográficos
Autores principales: Koren, Yogev, Mairon, Rotem, Sofer, Ilay, Parmet, Yisrael, Ben-Shahar, Ohad, Bar-Haim, Simona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074885/
https://www.ncbi.nlm.nih.gov/pubmed/33959324
http://dx.doi.org/10.1098/rsos.201556
Descripción
Sumario:When walking on an uneven surface or complex terrain, humans tend to gaze downward. This behaviour is usually interpreted as an attempt to acquire useful information to guide locomotion. Visual information, however, is not used exclusively for guiding locomotion; it is also useful for postural control. Both locomotive and postural control have been shown to be sensitive to the visual flow arising from the respective motion of the individual and the three-dimensional environment. This flow changes when a person gazes downward and may present information that is more appropriate for postural control. To investigate whether downward gazing can be used for postural control, rather than exclusively for guiding locomotion, we quantified the dynamics of standing and walking posture in healthy adults, under several visual conditions. Through these experiments we were able to demonstrate that gazing downward, just a few steps ahead, resulted in a steadier standing and walking posture. These experiments indicate that gazing downward may serve more than one purpose and provide sufficient evidence of the possible interplay between the visual information used for guiding locomotion and that used for postural control. These findings contribute to our understanding of the control mechanism/s underlying gait and posture and have possible clinical implications.