Cargando…

High burden of cryptococcal antigenemia and meningitis among patients presenting at an emergency department in Maputo, Mozambique

BACKGROUND: Cryptococcal meningitis is a leading cause of HIV-related mortality in sub-Saharan Africa, however, screening for cryptococcal antigenemia has not been universally implemented. As a result, data concerning cryptococcal meningitis and antigenemia are sparse, and in Mozambique, the prevale...

Descripción completa

Detalles Bibliográficos
Autores principales: Deiss, Robert, Loreti, Carolina V., Gutierrez, Ana G., Filipe, Eudoxia, Tatia, Milton, Issufo, Sheila, Ciglenecki, Iza, Loarec, Anne, Vivaldo, Henriques, Barra, Carmen, Siufi, Carolina, Molfino, Lucas, Tamayo Antabak, Natalia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075188/
https://www.ncbi.nlm.nih.gov/pubmed/33901215
http://dx.doi.org/10.1371/journal.pone.0250195
Descripción
Sumario:BACKGROUND: Cryptococcal meningitis is a leading cause of HIV-related mortality in sub-Saharan Africa, however, screening for cryptococcal antigenemia has not been universally implemented. As a result, data concerning cryptococcal meningitis and antigenemia are sparse, and in Mozambique, the prevalence of both are unknown. METHODS: We performed a retrospective analysis of routinely collected data from a point-of-care cryptococcal antigen screening program at a public hospital in Maputo, Mozambique. HIV-positive patients admitted to the emergency department underwent CD4 count testing; those with pre-defined abnormal vital signs or CD4 count ≤ 200 cells/μL received cryptococcal antigen testing and lumbar punctures if indicated. Patients with CM were admitted to the hospital and treated with liposomal amphotericin B and flucytosine; their 12-week outcomes were ascertained through review of medical records or telephone contact by program staff made in the routine course of service delivery. RESULTS: Among 1,795 patients screened for cryptococcal antigenemia between March 2018—March 2019, 134 (7.5%) were positive. Of patients with cryptococcal antigenemia, 96 (71.6%) were diagnosed with CM, representing 5.4% of all screened patients. Treatment outcomes were available for 87 CM patients: 24 patients (27.6%) died during induction treatment and 63 (72.4%) survived until discharge; of these, 38 (60.3%) remained in care, 9 (14.3%) died, and 16 (25.3%) were lost-to follow-up at 12 weeks. CONCLUSIONS: We found a high prevalence of cryptococcal antigenemia and meningitis among patients screened at an emergency department in Maputo, Mozambique. High mortality during and after induction therapy demonstrate missed opportunities for earlier detection of cryptococcal antigenemia, even as point-of-care screening and rapid assessment in an emergency room offer potential to improve outcomes.