Cargando…
From cockroaches to tanks: The same power-mass-speed relation describes both biological and artificial ground-mobile systems
This paper explores whether artificial ground-mobile systems exhibit a consistent regularity of relation among mass, power, and speed, similar to that which exists for biological organisms. To this end, we investigate an empirical allometric formula proposed in the 1980s for estimating the mechanica...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075212/ https://www.ncbi.nlm.nih.gov/pubmed/33901211 http://dx.doi.org/10.1371/journal.pone.0249066 |
Sumario: | This paper explores whether artificial ground-mobile systems exhibit a consistent regularity of relation among mass, power, and speed, similar to that which exists for biological organisms. To this end, we investigate an empirical allometric formula proposed in the 1980s for estimating the mechanical power expended by an organism of a given mass to move at a given speed, applicable over several orders of magnitude of mass, for a broad range of species, to determine if a comparable regularity applies to a range of vehicles. We show empirically that not only does a similar regularity apply to a wide variety of mobile systems; moreover, the formula is essentially the same, describing organisms and systems ranging from a roach (1 g) to a battle tank (35,000 kg). We also show that for very heavy vehicles (35,000–100,000,000 kg), the formula takes a qualitatively different form. These findings point to a fundamental similarity between biological and artificial locomotion that transcends great differences in morphology, mechanisms, materials, and behaviors. To illustrate the utility of this allometric relation, we investigate the significant extent to which ground robotic systems exhibit a higher cost of transport than either organisms or conventional vehicles, and discuss ways to overcome inefficiencies. |
---|