Cargando…
Fall risk classification for people with lower extremity amputations using random forests and smartphone sensor features from a 6-minute walk test
Fall-risk classification is a challenging but necessary task to enable the recommendation of preventative programs for individuals identified at risk for falling. Existing research has primarily focused on older adults, with no predictive fall-risk models for lower limb amputees, despite their great...
Autores principales: | Daines, Kyle J. F., Baddour, Natalie, Burger, Helena, Bavec, Andrej, Lemaire, Edward D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075234/ https://www.ncbi.nlm.nih.gov/pubmed/33901209 http://dx.doi.org/10.1371/journal.pone.0247574 |
Ejemplares similares
-
Amputee Fall Risk Classification Using Machine Learning and Smartphone Sensor Data from 2-Minute and 6-Minute Walk Tests
por: Juneau, Pascale, et al.
Publicado: (2022) -
Automated step detection with 6-minute walk test smartphone sensors signals for fall risk classification in lower limb amputees
por: Juneau, Pascale, et al.
Publicado: (2022) -
Comparison of Decision Tree and Long Short-Term Memory Approaches for Automated Foot Strike Detection in Lower Extremity Amputee Populations
por: Juneau, Pascale, et al.
Publicado: (2021) -
Novel algorithm for a smartphone-based 6-minute walk test application: algorithm, application development, and evaluation
por: Capela, Nicole A, et al.
Publicado: (2015) -
Dynamic balancing responses in unilateral transtibial amputees following outward-directed perturbations during slow treadmill walking differ considerably for amputated and non-amputated side
por: Olenšek, Andrej, et al.
Publicado: (2021)