Cargando…

Live-cell single-molecule tracking highlights requirements for stable Smc5/6 chromatin association in vivo

The essential Smc5/6 complex is required in response to replication stress and is best known for ensuring the fidelity of homologous recombination. Using single-molecule tracking in live fission yeast to investigate Smc5/6 chromatin association, we show that Smc5/6 is chromatin associated in unchall...

Descripción completa

Detalles Bibliográficos
Autores principales: Etheridge, Thomas J, Villahermosa, Desiree, Campillo-Funollet, Eduard, Herbert, Alex David, Irmisch, Anja, Watson, Adam T, Dang, Hung Q, Osborne, Mark A, Oliver, Antony W, Carr, Antony M, Murray, Johanne M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075580/
https://www.ncbi.nlm.nih.gov/pubmed/33860765
http://dx.doi.org/10.7554/eLife.68579
Descripción
Sumario:The essential Smc5/6 complex is required in response to replication stress and is best known for ensuring the fidelity of homologous recombination. Using single-molecule tracking in live fission yeast to investigate Smc5/6 chromatin association, we show that Smc5/6 is chromatin associated in unchallenged cells and this depends on the non-SMC protein Nse6. We define a minimum of two Nse6-dependent sub-pathways, one of which requires the BRCT-domain protein Brc1. Using defined mutants in genes encoding the core Smc5/6 complex subunits, we show that the Nse3 double-stranded DNA binding activity and the arginine fingers of the two Smc5/6 ATPase binding sites are critical for chromatin association. Interestingly, disrupting the single-stranded DNA (ssDNA) binding activity at the hinge region does not prevent chromatin association but leads to elevated levels of gross chromosomal rearrangements during replication restart. This is consistent with a downstream function for ssDNA binding in regulating homologous recombination.