Cargando…
Small Network for Lightweight Task in Computer Vision: A Pruning Method Based on Feature Representation
Many current convolutional neural networks are hard to meet the practical application requirement because of the enormous network parameters. For accelerating the inference speed of networks, more and more attention has been paid to network compression. Network pruning is one of the most efficient a...
Autores principales: | Ge, Yisu, Lu, Shufang, Gao, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075670/ https://www.ncbi.nlm.nih.gov/pubmed/33959156 http://dx.doi.org/10.1155/2021/5531023 |
Ejemplares similares
-
Lightweight image steganalysis with block-wise pruning
por: Hong, Eungi, et al.
Publicado: (2023) -
Skeletal representations of shape in human vision: Evidence for a pruned medial axis model
por: Ayzenberg, Vladislav, et al.
Publicado: (2019) -
Task’s Choice: Pruning-Based Feature Sharing (PBFS) for Multi-Task Learning
por: Chen, Ying, et al.
Publicado: (2022) -
Author Correction: Lightweight image steganalysis with block-wise pruning
por: Hong, Eungi, et al.
Publicado: (2023) -
Evolutionary Multi-Objective One-Shot Filter Pruning for Designing Lightweight Convolutional Neural Network
por: Wu, Tao, et al.
Publicado: (2021)