Cargando…
Changes in sleep EEG with aging in humans and rodents
Sleep is one of the most ubiquitous but also complex animal behaviors. It is regulated at the global, systems level scale by circadian and homeostatic processes. Across the 24-h day, distribution of sleep/wake activity differs between species, with global sleep states characterized by defined patter...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076123/ https://www.ncbi.nlm.nih.gov/pubmed/33791849 http://dx.doi.org/10.1007/s00424-021-02545-y |
Sumario: | Sleep is one of the most ubiquitous but also complex animal behaviors. It is regulated at the global, systems level scale by circadian and homeostatic processes. Across the 24-h day, distribution of sleep/wake activity differs between species, with global sleep states characterized by defined patterns of brain electric activity and electromyography. Sleep patterns have been most intensely investigated in mammalian species. The present review begins with a brief overview on current understandings on the regulation of sleep, and its interaction with aging. An overview on age-related variations in the sleep states and associated electrophysiology and oscillatory events in humans as well as in the most common laboratory rodents follows. We present findings observed in different studies and meta-analyses, indicating links to putative physiological changes in the aged brain. Concepts requiring a more integrative view on the role of circadian and homeostatic sleep regulatory mechanisms to explain aging in sleep are emerging. |
---|