Cargando…

Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks

Machine learning has emerged as a powerful approach in materials discovery. Its major challenge is selecting features that create interpretable representations of materials, useful across multiple prediction tasks. We introduce an end-to-end machine learning model that automatically generates descri...

Descripción completa

Detalles Bibliográficos
Autores principales: Krishnapriyan, Aditi S., Montoya, Joseph, Haranczyk, Maciej, Hummelshøj, Jens, Morozov, Dmitriy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076181/
https://www.ncbi.nlm.nih.gov/pubmed/33903606
http://dx.doi.org/10.1038/s41598-021-88027-8

Ejemplares similares