Cargando…
Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
Machine learning has emerged as a powerful approach in materials discovery. Its major challenge is selecting features that create interpretable representations of materials, useful across multiple prediction tasks. We introduce an end-to-end machine learning model that automatically generates descri...
Autores principales: | Krishnapriyan, Aditi S., Montoya, Joseph, Haranczyk, Maciej, Hummelshøj, Jens, Morozov, Dmitriy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076181/ https://www.ncbi.nlm.nih.gov/pubmed/33903606 http://dx.doi.org/10.1038/s41598-021-88027-8 |
Ejemplares similares
-
Capturing chemical intuition in synthesis of metal-organic frameworks
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2019) -
Word embeddings
por: Hellrich, J
Publicado: (2019) -
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus
por: Pinto, José Pedro, et al.
Publicado: (2022) -
Combining word embeddings to extract chemical and drug entities in biomedical literature
por: López-Úbeda, Pilar, et al.
Publicado: (2021) -
Embedding cognitive framework with self-attention for interpretable knowledge tracing
por: Pu, Yanjun, et al.
Publicado: (2022)