Cargando…
Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
Identifying structure underlying high-dimensional data is a common challenge across scientific disciplines. We revisit correspondence analysis (CA), a classical method revealing such structures, from a network perspective. We present the poorly-known equivalence of CA to spectral clustering and grap...
Autores principales: | van Dam, Alje, Dekker, Mark, Morales-Castilla, Ignacio, Rodríguez, Miguel Á., Wichmann, David, Baudena, Mara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076183/ https://www.ncbi.nlm.nih.gov/pubmed/33903623 http://dx.doi.org/10.1038/s41598-021-87971-9 |
Ejemplares similares
-
Spectral Embedded Deep Clustering
por: Wada, Yuichiro, et al.
Publicado: (2019) -
Guided graph spectral embedding: Application to the C. elegans connectome
por: Petrovic, Miljan, et al.
Publicado: (2019) -
On a two-truths phenomenon in spectral graph clustering
por: Priebe, Carey E., et al.
Publicado: (2019) -
Hierarchical Information Clustering by Means of Topologically Embedded Graphs
por: Song, Won-Min, et al.
Publicado: (2012) -
Spectral clustering and biclustering: learning large graphs and contingency tables
por: Bolla, Marianna
Publicado: (2013)