Cargando…
Deep learning-based automated and universal bubble detection and mask extraction in complex two-phase flows
While investigating multiphase flows experimentally, the spatiotemporal variation in the interfacial shape between different phases must be measured to analyze the transport phenomena. For this, numerous image processing techniques have been proposed, showing good performance. However, they require...
Autores principales: | Kim, Yewon, Park, Hyungmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076184/ https://www.ncbi.nlm.nih.gov/pubmed/33903689 http://dx.doi.org/10.1038/s41598-021-88334-0 |
Ejemplares similares
-
Bubble velocimetry using the conventional and CNN-based optical flow algorithms
por: Choi, Daehyun, et al.
Publicado: (2022) -
Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells
por: Wu, Chuan, et al.
Publicado: (2016) -
A deep learning model for automated kidney calculi detection on non-contrast computed tomography scans in dogs
por: Ji, Yewon, et al.
Publicado: (2023) -
Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI
por: Pradella, Maurice, et al.
Publicado: (2022) -
Particle leakage through the exhalation valve on a face mask under flow conditions mimicking human breathing: A critical assessment
por: Kang, Yeeun, et al.
Publicado: (2021)