Cargando…
Systematic STR analysis of old post-vasectomy seminal fluid stains to examine evidence stored for 16 years
To understand stored evidence and the insertion in genetic databases is important in forensic investigations. Blood, pre- and post-vasectomy semen from 90 fertile male individuals, aged 24 to 45, were donated for research after informed consent. The semen samples were stored in the form of 30 µL sta...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076208/ https://www.ncbi.nlm.nih.gov/pubmed/33903633 http://dx.doi.org/10.1038/s41598-021-87937-x |
Sumario: | To understand stored evidence and the insertion in genetic databases is important in forensic investigations. Blood, pre- and post-vasectomy semen from 90 fertile male individuals, aged 24 to 45, were donated for research after informed consent. The semen samples were stored in the form of 30 µL stains on cotton fabric, for 16 years at room temperature in the laboratory. As well as the seminal fluid post vasectomy stains, which were performed after microscopy analyzes and certainty of the absence of spermatozoon. The pre vasectomy stains contained mainly haploid spermatozoon and the post vasectomy stains diploid epithelial cells and leukocytes. DNA extraction was performed with magnetic resin, followed by quantification and analysis of degradation of DNA. In this study we analyze these genetic profiles of DNA from stains on cotton fabric, using two Short Tandem Repeat multiplex systems, the PowerPlex Fusion 6C and Y23. Electrophoresis was performed on a 3500xL and analyzed using the Gene Mapper ID-X software. The genetic profiles of the 90 individuals were fully amplified in pre-vasectomy and partially in post-vasectomy stain samples, using the both multiplex systems. The results provide information about 0.25 cm(2) semen stains on cotton fabric from 90 individuals, correlating concentration, degradation, and allele analysis. It also provides an understanding of the cells present in semen stains and the implications of individual factors. In the stains of post-vasectomy samples the small quantity of DNA was one of the limiting factors, in addition to degradation. Considering that all evaluations were carried out in a laboratory that has a quality control certificate and audited for being part of the national genetic profile database, the results were very consistent. Many aspects of the semen samples stored in the form of stains on cotton fabric have been clarified. The performance and sensitivity of the amplification systems used in the genotyping of azoospermic individuals were assessed. Conclusions: Genetic profiles were satisfactorily amplified in pre-vasectomy stain samples, and partially amplified in post-vasectomy stain samples, stored for almost two decades at room temperature in a tropical country. The small amount of DNA was one of the limitations in post-vasectomy stain samples, in addition to degradation and fragmentation. There are no publications in the literature on PowerPlex Fusion 6C and Y23 analyses using blood, sperm, and seminal fluids of the same individual, much less in the form of stains. This study can serve as a benchmark for the tracking analyses of stored samples. In addition, it anticipates a few social issues related to the analysis of post-vasectomy samples in forensic cases, most notably sex crimes. |
---|