Cargando…

Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria

The Decision Support System for Agricultural Technology Transfer (DSSAT) was used to quantify the impact of climate change on maize yield and the potential benefits of the use of drought-tolerant maize variety over non-drought tolerant variety in savanna ecological zones of Nigeria. Projections of m...

Descripción completa

Detalles Bibliográficos
Autores principales: Tofa, Abdullahi I., Kamara, Alpha Y., Babaji, Bashir A., Akinseye, Folorunso M., Bebeley, Jenneh F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076210/
https://www.ncbi.nlm.nih.gov/pubmed/33903650
http://dx.doi.org/10.1038/s41598-021-88277-6
_version_ 1783684648918843392
author Tofa, Abdullahi I.
Kamara, Alpha Y.
Babaji, Bashir A.
Akinseye, Folorunso M.
Bebeley, Jenneh F.
author_facet Tofa, Abdullahi I.
Kamara, Alpha Y.
Babaji, Bashir A.
Akinseye, Folorunso M.
Bebeley, Jenneh F.
author_sort Tofa, Abdullahi I.
collection PubMed
description The Decision Support System for Agricultural Technology Transfer (DSSAT) was used to quantify the impact of climate change on maize yield and the potential benefits of the use of drought-tolerant maize variety over non-drought tolerant variety in savanna ecological zones of Nigeria. Projections of maize yields were estimated for three locations representing different agro-climatic zones and soil conditions, in the mid-century (2040–2069) and end-century (2070–2099) under representative concentration pathways scenarios (RCP 4.5 and 8.5) against the baseline period (1980–2009). Relative to the baseline period, the ensemble Global Circulation Models (GCMs) predicted significant increase in minimum and maximum temperatures and seasonal rainfall across the sites. In the mid-century, ensemble GCMs predicted temperatures increase between 1.7–2.4 °C for RCP4.5 and 2.2–2.9 °C for RCP8.5. By end-century, the temperature increases between 2.2–3.0 °C under RCP4.5 and 3.9–5.0 °C under RCP8.5. Predicted seasonal rainfall increase between 1.2–7% for RCP4.5 and 0.03–10.6% for RCP8.5 in the mid-century. By end of century, rainfall is expected to increase between 2–6.7% for RCP4.5 and 3.3–20.1% for RCP8.5. The DSSAT model predictions indicated a negative impact on maize yield in all the selected sites, but the degree of the impact varies with variety and location. In the mid-century, the results showed that the yield of the non–drought tolerant maize variety, SAMMAZ-16 will decline by 13–19% under RCP4.5 and 19–28% under RCP8.5. The projection by end-century indicates a decline in yield by 18–26% under RCP4.5 and 38–47% under RCP8.5. The yield of the drought-tolerant variety is projected to decline by 9–18% for RCP4.5 and 14–25% for RCP8.5 in the mid-century and 13–23% under RCP4.5 and 32–43% under RCP8.5 by the end-century. The higher temperatures by both emission scenarios (RCP 4.5 and 8.5) were primarily shown to cause more yield losses for non-drought-tolerant variety than that of the drought-tolerant variety. There will be 1–6% less reduction in yield when drought-tolerant variety is used. However, the higher yield reductions in the range of − 13 to − 43% predicted for the drought-tolerant variety by the end of the century across the study areas highlighted the need to modify the maize breeding scheme to combine both tolerances to drought and heat stresses in the agro-ecological zones of northern Nigeria.
format Online
Article
Text
id pubmed-8076210
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-80762102021-04-27 Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria Tofa, Abdullahi I. Kamara, Alpha Y. Babaji, Bashir A. Akinseye, Folorunso M. Bebeley, Jenneh F. Sci Rep Article The Decision Support System for Agricultural Technology Transfer (DSSAT) was used to quantify the impact of climate change on maize yield and the potential benefits of the use of drought-tolerant maize variety over non-drought tolerant variety in savanna ecological zones of Nigeria. Projections of maize yields were estimated for three locations representing different agro-climatic zones and soil conditions, in the mid-century (2040–2069) and end-century (2070–2099) under representative concentration pathways scenarios (RCP 4.5 and 8.5) against the baseline period (1980–2009). Relative to the baseline period, the ensemble Global Circulation Models (GCMs) predicted significant increase in minimum and maximum temperatures and seasonal rainfall across the sites. In the mid-century, ensemble GCMs predicted temperatures increase between 1.7–2.4 °C for RCP4.5 and 2.2–2.9 °C for RCP8.5. By end-century, the temperature increases between 2.2–3.0 °C under RCP4.5 and 3.9–5.0 °C under RCP8.5. Predicted seasonal rainfall increase between 1.2–7% for RCP4.5 and 0.03–10.6% for RCP8.5 in the mid-century. By end of century, rainfall is expected to increase between 2–6.7% for RCP4.5 and 3.3–20.1% for RCP8.5. The DSSAT model predictions indicated a negative impact on maize yield in all the selected sites, but the degree of the impact varies with variety and location. In the mid-century, the results showed that the yield of the non–drought tolerant maize variety, SAMMAZ-16 will decline by 13–19% under RCP4.5 and 19–28% under RCP8.5. The projection by end-century indicates a decline in yield by 18–26% under RCP4.5 and 38–47% under RCP8.5. The yield of the drought-tolerant variety is projected to decline by 9–18% for RCP4.5 and 14–25% for RCP8.5 in the mid-century and 13–23% under RCP4.5 and 32–43% under RCP8.5 by the end-century. The higher temperatures by both emission scenarios (RCP 4.5 and 8.5) were primarily shown to cause more yield losses for non-drought-tolerant variety than that of the drought-tolerant variety. There will be 1–6% less reduction in yield when drought-tolerant variety is used. However, the higher yield reductions in the range of − 13 to − 43% predicted for the drought-tolerant variety by the end of the century across the study areas highlighted the need to modify the maize breeding scheme to combine both tolerances to drought and heat stresses in the agro-ecological zones of northern Nigeria. Nature Publishing Group UK 2021-04-26 /pmc/articles/PMC8076210/ /pubmed/33903650 http://dx.doi.org/10.1038/s41598-021-88277-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Tofa, Abdullahi I.
Kamara, Alpha Y.
Babaji, Bashir A.
Akinseye, Folorunso M.
Bebeley, Jenneh F.
Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria
title Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria
title_full Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria
title_fullStr Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria
title_full_unstemmed Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria
title_short Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria
title_sort assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of nigeria
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076210/
https://www.ncbi.nlm.nih.gov/pubmed/33903650
http://dx.doi.org/10.1038/s41598-021-88277-6
work_keys_str_mv AT tofaabdullahii assessingtheuseofadroughttolerantvarietyasadaptationstrategyformaizeproductionunderclimatechangeinthesavannasofnigeria
AT kamaraalphay assessingtheuseofadroughttolerantvarietyasadaptationstrategyformaizeproductionunderclimatechangeinthesavannasofnigeria
AT babajibashira assessingtheuseofadroughttolerantvarietyasadaptationstrategyformaizeproductionunderclimatechangeinthesavannasofnigeria
AT akinseyefolorunsom assessingtheuseofadroughttolerantvarietyasadaptationstrategyformaizeproductionunderclimatechangeinthesavannasofnigeria
AT bebeleyjennehf assessingtheuseofadroughttolerantvarietyasadaptationstrategyformaizeproductionunderclimatechangeinthesavannasofnigeria