Cargando…
Exploring the spatial heterogeneity and temporal homogeneity of ambient PM(10) in nine core cities of China
We focus on the causes of fluctuations in wintertime PM(10) in nine regional core cities of China using two machine learning models, Random Forest (RF) and Recurrent Neural Network (RNN). RF and RNN both show high performance in predicting hourly PM(10) using only gaseous air pollutants (SO(2), NO(2...
Autores principales: | Feng, Rui, Zhou, Rong, Shi, Weiwei, Shi, Nanjing, Fang, Xuekun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076262/ https://www.ncbi.nlm.nih.gov/pubmed/33903720 http://dx.doi.org/10.1038/s41598-021-88596-8 |
Ejemplares similares
-
Spatially and Temporally Resolved Ambient PM(2.5) in Relation to Preterm Birth
por: Cowell, Whitney, et al.
Publicado: (2021) -
Spatial and Temporal Trends of Number of Deaths Attributable to Ambient PM(2.5) in the Korea
por: Han, Changwoo, et al.
Publicado: (2018) -
Spatial and Temporal Distribution of PM(2.5) Pollution in Xi’an City, China
por: Huang, Ping, et al.
Publicado: (2015) -
Spatial Autocorrelation and Temporal Convergence of PM(2.5) Concentrations in Chinese Cities
por: Wang, Huan, et al.
Publicado: (2022) -
Personal and ambient PM(2.5) exposure assessment in the city of Agra
por: Habil, M., et al.
Publicado: (2016)