Cargando…
Machine learning and deep learning to predict mortality in patients with spontaneous coronary artery dissection
Machine learning (ML) and deep learning (DL) can successfully predict high prevalence events in very large databases (big data), but the value of this methodology for risk prediction in smaller cohorts with uncommon diseases and infrequent events is uncertain. The clinical course of spontaneous coro...
Autores principales: | Krittanawong, Chayakrit, Virk, Hafeez Ul Hassan, Kumar, Anirudh, Aydar, Mehmet, Wang, Zhen, Stewart, Matthew P., Halperin, Jonathan L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076284/ https://www.ncbi.nlm.nih.gov/pubmed/33903608 http://dx.doi.org/10.1038/s41598-021-88172-0 |
Ejemplares similares
-
Machine learning prediction in cardiovascular diseases: a meta-analysis
por: Krittanawong, Chayakrit, et al.
Publicado: (2020) -
Revascularization in Patients With Spontaneous Coronary Artery Dissection: Where Are We Now?
por: Krittanawong, Chayakrit, et al.
Publicado: (2021) -
Clinical Outcomes Following Bifurcation Techniques for Percutaneous Coronary Intervention
por: Krittanawong, Chayakrit, et al.
Publicado: (2023) -
Insights from Twitter about novel COVID-19 symptoms
por: Krittanawong, Chayakrit, et al.
Publicado: (2020) -
Association of Cardiovascular Disease and Pancreatitis: What Came First, the Chicken or the Egg?
por: Chen, Bing, et al.
Publicado: (2023)