Cargando…
Overcoming the limitations of patch-based learning to detect cancer in whole slide images
Whole slide images (WSIs) pose unique challenges when training deep learning models. They are very large which makes it necessary to break each image down into smaller patches for analysis, image features have to be extracted at multiple scales in order to capture both detail and context, and extrem...
Autores principales: | Ciga, Ozan, Xu, Tony, Nofech-Mozes, Sharon, Noy, Shawna, Lu, Fang-I, Martel, Anne L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076327/ https://www.ncbi.nlm.nih.gov/pubmed/33903725 http://dx.doi.org/10.1038/s41598-021-88494-z |
Ejemplares similares
-
A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification
por: Peikari, Mohammad, et al.
Publicado: (2018) -
Automated and Manual Quantification of Tumour Cellularity in Digital Slides for Tumour Burden Assessment
por: Akbar, Shazia, et al.
Publicado: (2019) -
Osteosarcoma Microenvironment: Whole-Slide Imaging and Optimized Antigen Detection Overcome Major Limitations in Immunohistochemical Quantification
por: Kunz, Pierre, et al.
Publicado: (2014) -
Overcoming an Annotation Hurdle: Digitizing Pen Annotations from Whole Slide Images
por: Schüffler, Peter J., et al.
Publicado: (2021) -
Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2019)