Cargando…
Applications of Topological Data Analysis in Oncology
The emergence of the information age in the last few decades brought with it an explosion of biomedical data. But with great power comes great responsibility: there is now a pressing need for new data analysis algorithms to be developed to make sense of the data and transform this information into k...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076640/ https://www.ncbi.nlm.nih.gov/pubmed/33928240 http://dx.doi.org/10.3389/frai.2021.659037 |
_version_ | 1783684723364593664 |
---|---|
author | Bukkuri, Anuraag Andor, Noemi Darcy, Isabel K. |
author_facet | Bukkuri, Anuraag Andor, Noemi Darcy, Isabel K. |
author_sort | Bukkuri, Anuraag |
collection | PubMed |
description | The emergence of the information age in the last few decades brought with it an explosion of biomedical data. But with great power comes great responsibility: there is now a pressing need for new data analysis algorithms to be developed to make sense of the data and transform this information into knowledge which can be directly translated into the clinic. Topological data analysis (TDA) provides a promising path forward: using tools from the mathematical field of algebraic topology, TDA provides a framework to extract insights into the often high-dimensional, incomplete, and noisy nature of biomedical data. Nowhere is this more evident than in the field of oncology, where patient-specific data is routinely presented to clinicians in a variety of forms, from imaging to single cell genomic sequencing. In this review, we focus on applications involving persistent homology, one of the main tools of TDA. We describe some recent successes of TDA in oncology, specifically in predicting treatment responses and prognosis, tumor segmentation and computer-aided diagnosis, disease classification, and cellular architecture determination. We also provide suggestions on avenues for future research including utilizing TDA to analyze cancer time-series data such as gene expression changes during pathogenesis, investigation of the relation between angiogenic vessel structure and treatment efficacy from imaging data, and experimental confirmation that geometric and topological connectivity implies functional connectivity in the context of cancer. |
format | Online Article Text |
id | pubmed-8076640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80766402021-04-28 Applications of Topological Data Analysis in Oncology Bukkuri, Anuraag Andor, Noemi Darcy, Isabel K. Front Artif Intell Artificial Intelligence The emergence of the information age in the last few decades brought with it an explosion of biomedical data. But with great power comes great responsibility: there is now a pressing need for new data analysis algorithms to be developed to make sense of the data and transform this information into knowledge which can be directly translated into the clinic. Topological data analysis (TDA) provides a promising path forward: using tools from the mathematical field of algebraic topology, TDA provides a framework to extract insights into the often high-dimensional, incomplete, and noisy nature of biomedical data. Nowhere is this more evident than in the field of oncology, where patient-specific data is routinely presented to clinicians in a variety of forms, from imaging to single cell genomic sequencing. In this review, we focus on applications involving persistent homology, one of the main tools of TDA. We describe some recent successes of TDA in oncology, specifically in predicting treatment responses and prognosis, tumor segmentation and computer-aided diagnosis, disease classification, and cellular architecture determination. We also provide suggestions on avenues for future research including utilizing TDA to analyze cancer time-series data such as gene expression changes during pathogenesis, investigation of the relation between angiogenic vessel structure and treatment efficacy from imaging data, and experimental confirmation that geometric and topological connectivity implies functional connectivity in the context of cancer. Frontiers Media S.A. 2021-04-13 /pmc/articles/PMC8076640/ /pubmed/33928240 http://dx.doi.org/10.3389/frai.2021.659037 Text en Copyright © 2021 Bukkuri, Andor and Darcy. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Artificial Intelligence Bukkuri, Anuraag Andor, Noemi Darcy, Isabel K. Applications of Topological Data Analysis in Oncology |
title | Applications of Topological Data Analysis in Oncology |
title_full | Applications of Topological Data Analysis in Oncology |
title_fullStr | Applications of Topological Data Analysis in Oncology |
title_full_unstemmed | Applications of Topological Data Analysis in Oncology |
title_short | Applications of Topological Data Analysis in Oncology |
title_sort | applications of topological data analysis in oncology |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076640/ https://www.ncbi.nlm.nih.gov/pubmed/33928240 http://dx.doi.org/10.3389/frai.2021.659037 |
work_keys_str_mv | AT bukkurianuraag applicationsoftopologicaldataanalysisinoncology AT andornoemi applicationsoftopologicaldataanalysisinoncology AT darcyisabelk applicationsoftopologicaldataanalysisinoncology |