Cargando…
Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment
Triple-negative breast cancer (TNBC) is an aggressive subset of breast cancer and currently lacks effective therapeutic targets. As two main phototherapeutic methods, photothermal therapy (PTT) and photodynamic therapy (PDT) show many advantages in TNBC treatment, and their combination with chemothe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076651/ https://www.ncbi.nlm.nih.gov/pubmed/33937590 http://dx.doi.org/10.1016/j.bioactmat.2021.04.004 |
_version_ | 1783684725719695360 |
---|---|
author | Zhang, Tao Liu, Hui Li, Ling Guo, Zhaoyang Song, Jia Yang, Xiaoying Wan, Guoyun Li, Rongshan Wang, Yinsong |
author_facet | Zhang, Tao Liu, Hui Li, Ling Guo, Zhaoyang Song, Jia Yang, Xiaoying Wan, Guoyun Li, Rongshan Wang, Yinsong |
author_sort | Zhang, Tao |
collection | PubMed |
description | Triple-negative breast cancer (TNBC) is an aggressive subset of breast cancer and currently lacks effective therapeutic targets. As two main phototherapeutic methods, photothermal therapy (PTT) and photodynamic therapy (PDT) show many advantages in TNBC treatment, and their combination with chemotherapy can achieve synergistic therapeutic effects. In the present study, a biomimetic nanoplatform was developed based on leukocyte/platelet hybrid membrane (LPHM) and dendritic large pore mesoporous silicon nanoparticles (DLMSNs). A near infrared (NIR) fluorescent dye IR780 and a chemotherapeutic drug doxorubicin (DOX) were co-loaded into the large pores of DLMSNs to prepare DLMSN@DOX/IR780 (DDI) nanoparticles (NPs), followed by camouflage with LPHM to obtain LPHM@DDI NPs. Through the mediation of LPHM, LPHM@DDI NPs showed an excellent TNBC-targeting ability and very high PTT/PDT performances in vitro and in vivo. Upon NIR laser irradiation, LPHM@DDI NPs exhibited synergistic cytotoxicity and apoptosis-inducing activity in TNBC cells, and effectively suppressed tumor growth and recurrence in TNBC mice through tumor ablation and anti-angiogenesis. These synergistic effects were sourced from the combination of PTT/PDT and chemotherapy. Altogether, this study offers a promising biomimetic nanoplatform for efficient co-loading and targeted delivery of photo/chemotherapeutic agents for TNBC combination treatment. |
format | Online Article Text |
id | pubmed-8076651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-80766512021-04-30 Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment Zhang, Tao Liu, Hui Li, Ling Guo, Zhaoyang Song, Jia Yang, Xiaoying Wan, Guoyun Li, Rongshan Wang, Yinsong Bioact Mater Article Triple-negative breast cancer (TNBC) is an aggressive subset of breast cancer and currently lacks effective therapeutic targets. As two main phototherapeutic methods, photothermal therapy (PTT) and photodynamic therapy (PDT) show many advantages in TNBC treatment, and their combination with chemotherapy can achieve synergistic therapeutic effects. In the present study, a biomimetic nanoplatform was developed based on leukocyte/platelet hybrid membrane (LPHM) and dendritic large pore mesoporous silicon nanoparticles (DLMSNs). A near infrared (NIR) fluorescent dye IR780 and a chemotherapeutic drug doxorubicin (DOX) were co-loaded into the large pores of DLMSNs to prepare DLMSN@DOX/IR780 (DDI) nanoparticles (NPs), followed by camouflage with LPHM to obtain LPHM@DDI NPs. Through the mediation of LPHM, LPHM@DDI NPs showed an excellent TNBC-targeting ability and very high PTT/PDT performances in vitro and in vivo. Upon NIR laser irradiation, LPHM@DDI NPs exhibited synergistic cytotoxicity and apoptosis-inducing activity in TNBC cells, and effectively suppressed tumor growth and recurrence in TNBC mice through tumor ablation and anti-angiogenesis. These synergistic effects were sourced from the combination of PTT/PDT and chemotherapy. Altogether, this study offers a promising biomimetic nanoplatform for efficient co-loading and targeted delivery of photo/chemotherapeutic agents for TNBC combination treatment. KeAi Publishing 2021-04-13 /pmc/articles/PMC8076651/ /pubmed/33937590 http://dx.doi.org/10.1016/j.bioactmat.2021.04.004 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Zhang, Tao Liu, Hui Li, Ling Guo, Zhaoyang Song, Jia Yang, Xiaoying Wan, Guoyun Li, Rongshan Wang, Yinsong Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment |
title | Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment |
title_full | Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment |
title_fullStr | Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment |
title_full_unstemmed | Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment |
title_short | Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment |
title_sort | leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076651/ https://www.ncbi.nlm.nih.gov/pubmed/33937590 http://dx.doi.org/10.1016/j.bioactmat.2021.04.004 |
work_keys_str_mv | AT zhangtao leukocyteplatelethybridmembranecamouflageddendriticlargeporemesoporoussilicananoparticlescoloadedwithphotochemotherapeuticagentsfortriplenegativebreastcancercombinationtreatment AT liuhui leukocyteplatelethybridmembranecamouflageddendriticlargeporemesoporoussilicananoparticlescoloadedwithphotochemotherapeuticagentsfortriplenegativebreastcancercombinationtreatment AT liling leukocyteplatelethybridmembranecamouflageddendriticlargeporemesoporoussilicananoparticlescoloadedwithphotochemotherapeuticagentsfortriplenegativebreastcancercombinationtreatment AT guozhaoyang leukocyteplatelethybridmembranecamouflageddendriticlargeporemesoporoussilicananoparticlescoloadedwithphotochemotherapeuticagentsfortriplenegativebreastcancercombinationtreatment AT songjia leukocyteplatelethybridmembranecamouflageddendriticlargeporemesoporoussilicananoparticlescoloadedwithphotochemotherapeuticagentsfortriplenegativebreastcancercombinationtreatment AT yangxiaoying leukocyteplatelethybridmembranecamouflageddendriticlargeporemesoporoussilicananoparticlescoloadedwithphotochemotherapeuticagentsfortriplenegativebreastcancercombinationtreatment AT wanguoyun leukocyteplatelethybridmembranecamouflageddendriticlargeporemesoporoussilicananoparticlescoloadedwithphotochemotherapeuticagentsfortriplenegativebreastcancercombinationtreatment AT lirongshan leukocyteplatelethybridmembranecamouflageddendriticlargeporemesoporoussilicananoparticlescoloadedwithphotochemotherapeuticagentsfortriplenegativebreastcancercombinationtreatment AT wangyinsong leukocyteplatelethybridmembranecamouflageddendriticlargeporemesoporoussilicananoparticlescoloadedwithphotochemotherapeuticagentsfortriplenegativebreastcancercombinationtreatment |