Cargando…

Synergistic Effects of Exercise Training and Vitamin D Supplementation on Mitochondrial Function of Cardiac Tissue, Antioxidant Capacity, and Tumor Growth in Breast Cancer in Bearing-4T1 Mice

Both regular exercise training and vitamin D consumption are beneficial for patients with cancer. The study investigated the effects of interval exercise training (IET) or/and vitamin D supplementation on the gene expression involved in mitochondrial function of heart tissue, tumor size, and total a...

Descripción completa

Detalles Bibliográficos
Autores principales: Jafari, Ali, Sheikholeslami-Vatani, Dariush, Khosrobakhsh, Farnoosh, Khaledi, Neda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076802/
https://www.ncbi.nlm.nih.gov/pubmed/33927639
http://dx.doi.org/10.3389/fphys.2021.640237
_version_ 1783684760744230912
author Jafari, Ali
Sheikholeslami-Vatani, Dariush
Khosrobakhsh, Farnoosh
Khaledi, Neda
author_facet Jafari, Ali
Sheikholeslami-Vatani, Dariush
Khosrobakhsh, Farnoosh
Khaledi, Neda
author_sort Jafari, Ali
collection PubMed
description Both regular exercise training and vitamin D consumption are beneficial for patients with cancer. The study investigated the effects of interval exercise training (IET) or/and vitamin D supplementation on the gene expression involved in mitochondrial function of heart tissue, tumor size, and total antioxidant capacity (TAC) in breast cancer (BC) model mice. We assigned random 40 female NMRI mice to five equal groups (n = 8); the healthy control group (H.C), cancer control group (Ca.C), cancer with the vitamin D group (Ca.VD), cancer exercise group (Ca.Ex), and cancer exercise along with the vitamin D group (Ca.Ex.VD). Forty-eight hours after treatment, we anesthetized the animals and performed the isolation of heart tissue and blood serum for further studies. The results showed that the lowest mean body weight at the end of the treatments was related to Ca.C (p = 0.001). Vitamin D treatment alone has increased tumor volume growth by approximately 23%; in contrast, co-treatment with exercise and vitamin D inhibited tumor growth in mice (P = 0.001), compared with the cancer control (12%). TAC levels were higher in the group that received both vitamin D and exercise training (Ca.Ex.VD) than in the other treatment groups (Ca.VD and Ca.Ex) (p = 0.001). In cardiac tissue, vitamin D treatment induces an elevation significantly of the mRNA expression of Pgc1−α, Mfn-1, and Drp-1 genes (p = 0.001). The study has shown the overexpression of vitamin D in female mice, and synergistic effects of IET with vitamin D on weight loss controlling, antitumorigenesis, improvement of antioxidant defense, and the modulation of gene expression. The synergistic responses were likely by increasing mitochondrial fusion and TAC to control oxidative stress. We recommended being conducted further studies on mitochondrial dynamics and biogenesis focusing on risk factors of cardiovascular disease (CVD) in patients with BC.
format Online
Article
Text
id pubmed-8076802
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-80768022021-04-28 Synergistic Effects of Exercise Training and Vitamin D Supplementation on Mitochondrial Function of Cardiac Tissue, Antioxidant Capacity, and Tumor Growth in Breast Cancer in Bearing-4T1 Mice Jafari, Ali Sheikholeslami-Vatani, Dariush Khosrobakhsh, Farnoosh Khaledi, Neda Front Physiol Physiology Both regular exercise training and vitamin D consumption are beneficial for patients with cancer. The study investigated the effects of interval exercise training (IET) or/and vitamin D supplementation on the gene expression involved in mitochondrial function of heart tissue, tumor size, and total antioxidant capacity (TAC) in breast cancer (BC) model mice. We assigned random 40 female NMRI mice to five equal groups (n = 8); the healthy control group (H.C), cancer control group (Ca.C), cancer with the vitamin D group (Ca.VD), cancer exercise group (Ca.Ex), and cancer exercise along with the vitamin D group (Ca.Ex.VD). Forty-eight hours after treatment, we anesthetized the animals and performed the isolation of heart tissue and blood serum for further studies. The results showed that the lowest mean body weight at the end of the treatments was related to Ca.C (p = 0.001). Vitamin D treatment alone has increased tumor volume growth by approximately 23%; in contrast, co-treatment with exercise and vitamin D inhibited tumor growth in mice (P = 0.001), compared with the cancer control (12%). TAC levels were higher in the group that received both vitamin D and exercise training (Ca.Ex.VD) than in the other treatment groups (Ca.VD and Ca.Ex) (p = 0.001). In cardiac tissue, vitamin D treatment induces an elevation significantly of the mRNA expression of Pgc1−α, Mfn-1, and Drp-1 genes (p = 0.001). The study has shown the overexpression of vitamin D in female mice, and synergistic effects of IET with vitamin D on weight loss controlling, antitumorigenesis, improvement of antioxidant defense, and the modulation of gene expression. The synergistic responses were likely by increasing mitochondrial fusion and TAC to control oxidative stress. We recommended being conducted further studies on mitochondrial dynamics and biogenesis focusing on risk factors of cardiovascular disease (CVD) in patients with BC. Frontiers Media S.A. 2021-04-13 /pmc/articles/PMC8076802/ /pubmed/33927639 http://dx.doi.org/10.3389/fphys.2021.640237 Text en Copyright © 2021 Jafari, Sheikholeslami-Vatani, Khosrobakhsh and Khaledi. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Jafari, Ali
Sheikholeslami-Vatani, Dariush
Khosrobakhsh, Farnoosh
Khaledi, Neda
Synergistic Effects of Exercise Training and Vitamin D Supplementation on Mitochondrial Function of Cardiac Tissue, Antioxidant Capacity, and Tumor Growth in Breast Cancer in Bearing-4T1 Mice
title Synergistic Effects of Exercise Training and Vitamin D Supplementation on Mitochondrial Function of Cardiac Tissue, Antioxidant Capacity, and Tumor Growth in Breast Cancer in Bearing-4T1 Mice
title_full Synergistic Effects of Exercise Training and Vitamin D Supplementation on Mitochondrial Function of Cardiac Tissue, Antioxidant Capacity, and Tumor Growth in Breast Cancer in Bearing-4T1 Mice
title_fullStr Synergistic Effects of Exercise Training and Vitamin D Supplementation on Mitochondrial Function of Cardiac Tissue, Antioxidant Capacity, and Tumor Growth in Breast Cancer in Bearing-4T1 Mice
title_full_unstemmed Synergistic Effects of Exercise Training and Vitamin D Supplementation on Mitochondrial Function of Cardiac Tissue, Antioxidant Capacity, and Tumor Growth in Breast Cancer in Bearing-4T1 Mice
title_short Synergistic Effects of Exercise Training and Vitamin D Supplementation on Mitochondrial Function of Cardiac Tissue, Antioxidant Capacity, and Tumor Growth in Breast Cancer in Bearing-4T1 Mice
title_sort synergistic effects of exercise training and vitamin d supplementation on mitochondrial function of cardiac tissue, antioxidant capacity, and tumor growth in breast cancer in bearing-4t1 mice
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076802/
https://www.ncbi.nlm.nih.gov/pubmed/33927639
http://dx.doi.org/10.3389/fphys.2021.640237
work_keys_str_mv AT jafariali synergisticeffectsofexercisetrainingandvitamindsupplementationonmitochondrialfunctionofcardiactissueantioxidantcapacityandtumorgrowthinbreastcancerinbearing4t1mice
AT sheikholeslamivatanidariush synergisticeffectsofexercisetrainingandvitamindsupplementationonmitochondrialfunctionofcardiactissueantioxidantcapacityandtumorgrowthinbreastcancerinbearing4t1mice
AT khosrobakhshfarnoosh synergisticeffectsofexercisetrainingandvitamindsupplementationonmitochondrialfunctionofcardiactissueantioxidantcapacityandtumorgrowthinbreastcancerinbearing4t1mice
AT khaledineda synergisticeffectsofexercisetrainingandvitamindsupplementationonmitochondrialfunctionofcardiactissueantioxidantcapacityandtumorgrowthinbreastcancerinbearing4t1mice