Cargando…

Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm

OBJECTIVE: To evaluate circularity as a quantitative shape factor of small renal tumor on computed tomography (CT) in differentiating fat-poor angiomyolipoma (AML) from renal cell carcinoma (RCC). MATERIALS AND METHODS: In 257 consecutive patients, 257 pathologically confirmed renal tumors (either A...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Hye Seon, Park, Jung Jae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Radiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076823/
https://www.ncbi.nlm.nih.gov/pubmed/33660463
http://dx.doi.org/10.3348/kjr.2020.0865
_version_ 1783684765739646976
author Kang, Hye Seon
Park, Jung Jae
author_facet Kang, Hye Seon
Park, Jung Jae
author_sort Kang, Hye Seon
collection PubMed
description OBJECTIVE: To evaluate circularity as a quantitative shape factor of small renal tumor on computed tomography (CT) in differentiating fat-poor angiomyolipoma (AML) from renal cell carcinoma (RCC). MATERIALS AND METHODS: In 257 consecutive patients, 257 pathologically confirmed renal tumors (either AML or RCC less than 4 cm), which did not include visible fat on unenhanced CT, were retrospectively evaluated. A radiologist drew the tumor margin to measure the perimeter and area in all the contrast-enhanced axial CT images. In each image, a quantitative shape factor, circularity, was calculated using the following equation: 4 × π × (area ÷ perimeter(2)). The median circularity (circularity index) was adopted as a representative value in each tumor. The circularity index was compared between fat-poor AML and RCC, and the receiver operating characteristic (ROC) curve analysis was performed. Univariable and multivariable binary logistic regression analysis was performed to determine the independent predictor of fat-poor AML. RESULTS: Of the 257 tumors, 26 were AMLs and 231 were RCCs (184 clear cell RCCs, 25 papillary RCCs, and 22 chromophobe RCCs). The mean circularity index of AML was significantly lower than that of RCC (0.86 ± 0.04 vs. 0.93 ± 0.02, p < 0.001). The mean circularity index was not different between the subtypes of RCCs (0.93 ± 0.02, 0.92 ± 0.02, and 0.92 ± 0.02 for clear cell, papillary, and chromophobe RCCs, respectively, p = 0.210). The area under the ROC curve of circularity index was 0.924 for differentiating fat-poor AML from RCC. The sensitivity and specificity were 88.5% and 90.9%, respectively (cut-off, 0.90). Lower circularity index (≤ 0.9) was an independent predictor (odds ratio, 41.0; p < 0.001) for predicting fat-poor AML on multivariable logistic regression analysis. CONCLUSION: Circularity is a useful quantitative shape factor of small renal tumor for differentiating fat-poor AML from RCC.
format Online
Article
Text
id pubmed-8076823
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Korean Society of Radiology
record_format MEDLINE/PubMed
spelling pubmed-80768232021-05-06 Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm Kang, Hye Seon Park, Jung Jae Korean J Radiol Genitourinary Imaging OBJECTIVE: To evaluate circularity as a quantitative shape factor of small renal tumor on computed tomography (CT) in differentiating fat-poor angiomyolipoma (AML) from renal cell carcinoma (RCC). MATERIALS AND METHODS: In 257 consecutive patients, 257 pathologically confirmed renal tumors (either AML or RCC less than 4 cm), which did not include visible fat on unenhanced CT, were retrospectively evaluated. A radiologist drew the tumor margin to measure the perimeter and area in all the contrast-enhanced axial CT images. In each image, a quantitative shape factor, circularity, was calculated using the following equation: 4 × π × (area ÷ perimeter(2)). The median circularity (circularity index) was adopted as a representative value in each tumor. The circularity index was compared between fat-poor AML and RCC, and the receiver operating characteristic (ROC) curve analysis was performed. Univariable and multivariable binary logistic regression analysis was performed to determine the independent predictor of fat-poor AML. RESULTS: Of the 257 tumors, 26 were AMLs and 231 were RCCs (184 clear cell RCCs, 25 papillary RCCs, and 22 chromophobe RCCs). The mean circularity index of AML was significantly lower than that of RCC (0.86 ± 0.04 vs. 0.93 ± 0.02, p < 0.001). The mean circularity index was not different between the subtypes of RCCs (0.93 ± 0.02, 0.92 ± 0.02, and 0.92 ± 0.02 for clear cell, papillary, and chromophobe RCCs, respectively, p = 0.210). The area under the ROC curve of circularity index was 0.924 for differentiating fat-poor AML from RCC. The sensitivity and specificity were 88.5% and 90.9%, respectively (cut-off, 0.90). Lower circularity index (≤ 0.9) was an independent predictor (odds ratio, 41.0; p < 0.001) for predicting fat-poor AML on multivariable logistic regression analysis. CONCLUSION: Circularity is a useful quantitative shape factor of small renal tumor for differentiating fat-poor AML from RCC. The Korean Society of Radiology 2021-05 2021-02-09 /pmc/articles/PMC8076823/ /pubmed/33660463 http://dx.doi.org/10.3348/kjr.2020.0865 Text en Copyright © 2021 The Korean Society of Radiology https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genitourinary Imaging
Kang, Hye Seon
Park, Jung Jae
Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm
title Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm
title_full Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm
title_fullStr Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm
title_full_unstemmed Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm
title_short Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm
title_sort circularity index on contrast-enhanced computed tomography helps distinguish fat-poor angiomyolipoma from renal cell carcinoma: retrospective analyses of histologically proven 257 small renal tumors less than 4 cm
topic Genitourinary Imaging
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076823/
https://www.ncbi.nlm.nih.gov/pubmed/33660463
http://dx.doi.org/10.3348/kjr.2020.0865
work_keys_str_mv AT kanghyeseon circularityindexoncontrastenhancedcomputedtomographyhelpsdistinguishfatpoorangiomyolipomafromrenalcellcarcinomaretrospectiveanalysesofhistologicallyproven257smallrenaltumorslessthan4cm
AT parkjungjae circularityindexoncontrastenhancedcomputedtomographyhelpsdistinguishfatpoorangiomyolipomafromrenalcellcarcinomaretrospectiveanalysesofhistologicallyproven257smallrenaltumorslessthan4cm