Cargando…
Tangent nonlinear equation in context of fractal fractional operators with nonsingular kernel
In this manuscript, we investigate the approximate solutions to the tangent nonlinear packaging equation in the context of fractional calculus. It is an important equation because shock and vibrations are unavoidable circumstances for the packaged goods during transport from production plants to the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078098/ https://www.ncbi.nlm.nih.gov/pubmed/35673627 http://dx.doi.org/10.1007/s40096-021-00403-7 |
Sumario: | In this manuscript, we investigate the approximate solutions to the tangent nonlinear packaging equation in the context of fractional calculus. It is an important equation because shock and vibrations are unavoidable circumstances for the packaged goods during transport from production plants to the consumer. We consider the fractal fractional Caputo operator and Atangana–Baleanu fractal fractional operator with nonsingular kernel to obtain the numerical consequences. Both fractal fractional techniques are equally good, but the Atangana–Baleanu Caputo method has an edge over Caputo method. For illustrations and clarity of our main results, we provided the numerical simulations of the approximate solutions and their physical interpretations. This paper contributes to the new applications of fractional calculus in packaging systems. |
---|