Cargando…

Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes

Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Bersanelli, Matteo, Travaglino, Erica, Meggendorfer, Manja, Matteuzzi, Tommaso, Sala, Claudia, Mosca, Ettore, Chiereghin, Chiara, Di Nanni, Noemi, Gnocchi, Matteo, Zampini, Matteo, Rossi, Marianna, Maggioni, Giulia, Termanini, Alberto, Angelucci, Emanuele, Bernardi, Massimo, Borin, Lorenza, Bruno, Benedetto, Bonifazi, Francesca, Santini, Valeria, Bacigalupo, Andrea, Voso, Maria Teresa, Oliva, Esther, Riva, Marta, Ubezio, Marta, Morabito, Lucio, Campagna, Alessia, Saitta, Claudia, Savevski, Victor, Giampieri, Enrico, Remondini, Daniel, Passamonti, Francesco, Ciceri, Fabio, Bolli, Niccolò, Rambaldi, Alessandro, Kern, Wolfgang, Kordasti, Shahram, Sole, Francesc, Palomo, Laura, Sanz, Guillermo, Santoro, Armando, Platzbecker, Uwe, Fenaux, Pierre, Milanesi, Luciano, Haferlach, Torsten, Castellani, Gastone, Della Porta, Matteo G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078359/
https://www.ncbi.nlm.nih.gov/pubmed/33539200
http://dx.doi.org/10.1200/JCO.20.01659
_version_ 1783685044291764224
author Bersanelli, Matteo
Travaglino, Erica
Meggendorfer, Manja
Matteuzzi, Tommaso
Sala, Claudia
Mosca, Ettore
Chiereghin, Chiara
Di Nanni, Noemi
Gnocchi, Matteo
Zampini, Matteo
Rossi, Marianna
Maggioni, Giulia
Termanini, Alberto
Angelucci, Emanuele
Bernardi, Massimo
Borin, Lorenza
Bruno, Benedetto
Bonifazi, Francesca
Santini, Valeria
Bacigalupo, Andrea
Voso, Maria Teresa
Oliva, Esther
Riva, Marta
Ubezio, Marta
Morabito, Lucio
Campagna, Alessia
Saitta, Claudia
Savevski, Victor
Giampieri, Enrico
Remondini, Daniel
Passamonti, Francesco
Ciceri, Fabio
Bolli, Niccolò
Rambaldi, Alessandro
Kern, Wolfgang
Kordasti, Shahram
Sole, Francesc
Palomo, Laura
Sanz, Guillermo
Santoro, Armando
Platzbecker, Uwe
Fenaux, Pierre
Milanesi, Luciano
Haferlach, Torsten
Castellani, Gastone
Della Porta, Matteo G.
author_facet Bersanelli, Matteo
Travaglino, Erica
Meggendorfer, Manja
Matteuzzi, Tommaso
Sala, Claudia
Mosca, Ettore
Chiereghin, Chiara
Di Nanni, Noemi
Gnocchi, Matteo
Zampini, Matteo
Rossi, Marianna
Maggioni, Giulia
Termanini, Alberto
Angelucci, Emanuele
Bernardi, Massimo
Borin, Lorenza
Bruno, Benedetto
Bonifazi, Francesca
Santini, Valeria
Bacigalupo, Andrea
Voso, Maria Teresa
Oliva, Esther
Riva, Marta
Ubezio, Marta
Morabito, Lucio
Campagna, Alessia
Saitta, Claudia
Savevski, Victor
Giampieri, Enrico
Remondini, Daniel
Passamonti, Francesco
Ciceri, Fabio
Bolli, Niccolò
Rambaldi, Alessandro
Kern, Wolfgang
Kordasti, Shahram
Sole, Francesc
Palomo, Laura
Sanz, Guillermo
Santoro, Armando
Platzbecker, Uwe
Fenaux, Pierre
Milanesi, Luciano
Haferlach, Torsten
Castellani, Gastone
Della Porta, Matteo G.
author_sort Bersanelli, Matteo
collection PubMed
description Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed. RESULTS: We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations (SF3B1, SRSF2, and U2AF1) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with SF3B1 mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within SF3B1- and SRSF2-related MDS. MDS with complex karyotype and/or TP53 gene abnormalities and MDS with acute leukemia–like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of TP53 mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features. CONCLUSION: Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis.
format Online
Article
Text
id pubmed-8078359
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Wolters Kluwer Health
record_format MEDLINE/PubMed
spelling pubmed-80783592022-04-10 Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes Bersanelli, Matteo Travaglino, Erica Meggendorfer, Manja Matteuzzi, Tommaso Sala, Claudia Mosca, Ettore Chiereghin, Chiara Di Nanni, Noemi Gnocchi, Matteo Zampini, Matteo Rossi, Marianna Maggioni, Giulia Termanini, Alberto Angelucci, Emanuele Bernardi, Massimo Borin, Lorenza Bruno, Benedetto Bonifazi, Francesca Santini, Valeria Bacigalupo, Andrea Voso, Maria Teresa Oliva, Esther Riva, Marta Ubezio, Marta Morabito, Lucio Campagna, Alessia Saitta, Claudia Savevski, Victor Giampieri, Enrico Remondini, Daniel Passamonti, Francesco Ciceri, Fabio Bolli, Niccolò Rambaldi, Alessandro Kern, Wolfgang Kordasti, Shahram Sole, Francesc Palomo, Laura Sanz, Guillermo Santoro, Armando Platzbecker, Uwe Fenaux, Pierre Milanesi, Luciano Haferlach, Torsten Castellani, Gastone Della Porta, Matteo G. J Clin Oncol ORIGINAL REPORTS Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed. RESULTS: We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations (SF3B1, SRSF2, and U2AF1) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with SF3B1 mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within SF3B1- and SRSF2-related MDS. MDS with complex karyotype and/or TP53 gene abnormalities and MDS with acute leukemia–like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of TP53 mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features. CONCLUSION: Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis. Wolters Kluwer Health 2021-04-10 2021-02-04 /pmc/articles/PMC8078359/ /pubmed/33539200 http://dx.doi.org/10.1200/JCO.20.01659 Text en © 2021 by American Society of Clinical Oncology https://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution Non-Commercial No Derivatives 4.0 License: https://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle ORIGINAL REPORTS
Bersanelli, Matteo
Travaglino, Erica
Meggendorfer, Manja
Matteuzzi, Tommaso
Sala, Claudia
Mosca, Ettore
Chiereghin, Chiara
Di Nanni, Noemi
Gnocchi, Matteo
Zampini, Matteo
Rossi, Marianna
Maggioni, Giulia
Termanini, Alberto
Angelucci, Emanuele
Bernardi, Massimo
Borin, Lorenza
Bruno, Benedetto
Bonifazi, Francesca
Santini, Valeria
Bacigalupo, Andrea
Voso, Maria Teresa
Oliva, Esther
Riva, Marta
Ubezio, Marta
Morabito, Lucio
Campagna, Alessia
Saitta, Claudia
Savevski, Victor
Giampieri, Enrico
Remondini, Daniel
Passamonti, Francesco
Ciceri, Fabio
Bolli, Niccolò
Rambaldi, Alessandro
Kern, Wolfgang
Kordasti, Shahram
Sole, Francesc
Palomo, Laura
Sanz, Guillermo
Santoro, Armando
Platzbecker, Uwe
Fenaux, Pierre
Milanesi, Luciano
Haferlach, Torsten
Castellani, Gastone
Della Porta, Matteo G.
Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes
title Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes
title_full Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes
title_fullStr Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes
title_full_unstemmed Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes
title_short Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes
title_sort classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes
topic ORIGINAL REPORTS
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078359/
https://www.ncbi.nlm.nih.gov/pubmed/33539200
http://dx.doi.org/10.1200/JCO.20.01659
work_keys_str_mv AT bersanellimatteo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT travaglinoerica classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT meggendorfermanja classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT matteuzzitommaso classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT salaclaudia classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT moscaettore classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT chiereghinchiara classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT dinanninoemi classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT gnocchimatteo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT zampinimatteo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT rossimarianna classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT maggionigiulia classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT termaninialberto classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT angelucciemanuele classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT bernardimassimo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT borinlorenza classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT brunobenedetto classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT bonifazifrancesca classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT santinivaleria classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT bacigalupoandrea classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT vosomariateresa classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT olivaesther classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT rivamarta classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT ubeziomarta classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT morabitolucio classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT campagnaalessia classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT saittaclaudia classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT savevskivictor classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT giampierienrico classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT remondinidaniel classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT passamontifrancesco classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT cicerifabio classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT bolliniccolo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT rambaldialessandro classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT kernwolfgang classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT kordastishahram classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT solefrancesc classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT palomolaura classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT sanzguillermo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT santoroarmando classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT platzbeckeruwe classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT fenauxpierre classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT milanesiluciano classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT haferlachtorsten classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT castellanigastone classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes
AT dellaportamatteog classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes