Cargando…
Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes
Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet proc...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078359/ https://www.ncbi.nlm.nih.gov/pubmed/33539200 http://dx.doi.org/10.1200/JCO.20.01659 |
_version_ | 1783685044291764224 |
---|---|
author | Bersanelli, Matteo Travaglino, Erica Meggendorfer, Manja Matteuzzi, Tommaso Sala, Claudia Mosca, Ettore Chiereghin, Chiara Di Nanni, Noemi Gnocchi, Matteo Zampini, Matteo Rossi, Marianna Maggioni, Giulia Termanini, Alberto Angelucci, Emanuele Bernardi, Massimo Borin, Lorenza Bruno, Benedetto Bonifazi, Francesca Santini, Valeria Bacigalupo, Andrea Voso, Maria Teresa Oliva, Esther Riva, Marta Ubezio, Marta Morabito, Lucio Campagna, Alessia Saitta, Claudia Savevski, Victor Giampieri, Enrico Remondini, Daniel Passamonti, Francesco Ciceri, Fabio Bolli, Niccolò Rambaldi, Alessandro Kern, Wolfgang Kordasti, Shahram Sole, Francesc Palomo, Laura Sanz, Guillermo Santoro, Armando Platzbecker, Uwe Fenaux, Pierre Milanesi, Luciano Haferlach, Torsten Castellani, Gastone Della Porta, Matteo G. |
author_facet | Bersanelli, Matteo Travaglino, Erica Meggendorfer, Manja Matteuzzi, Tommaso Sala, Claudia Mosca, Ettore Chiereghin, Chiara Di Nanni, Noemi Gnocchi, Matteo Zampini, Matteo Rossi, Marianna Maggioni, Giulia Termanini, Alberto Angelucci, Emanuele Bernardi, Massimo Borin, Lorenza Bruno, Benedetto Bonifazi, Francesca Santini, Valeria Bacigalupo, Andrea Voso, Maria Teresa Oliva, Esther Riva, Marta Ubezio, Marta Morabito, Lucio Campagna, Alessia Saitta, Claudia Savevski, Victor Giampieri, Enrico Remondini, Daniel Passamonti, Francesco Ciceri, Fabio Bolli, Niccolò Rambaldi, Alessandro Kern, Wolfgang Kordasti, Shahram Sole, Francesc Palomo, Laura Sanz, Guillermo Santoro, Armando Platzbecker, Uwe Fenaux, Pierre Milanesi, Luciano Haferlach, Torsten Castellani, Gastone Della Porta, Matteo G. |
author_sort | Bersanelli, Matteo |
collection | PubMed |
description | Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed. RESULTS: We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations (SF3B1, SRSF2, and U2AF1) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with SF3B1 mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within SF3B1- and SRSF2-related MDS. MDS with complex karyotype and/or TP53 gene abnormalities and MDS with acute leukemia–like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of TP53 mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features. CONCLUSION: Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis. |
format | Online Article Text |
id | pubmed-8078359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Wolters Kluwer Health |
record_format | MEDLINE/PubMed |
spelling | pubmed-80783592022-04-10 Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes Bersanelli, Matteo Travaglino, Erica Meggendorfer, Manja Matteuzzi, Tommaso Sala, Claudia Mosca, Ettore Chiereghin, Chiara Di Nanni, Noemi Gnocchi, Matteo Zampini, Matteo Rossi, Marianna Maggioni, Giulia Termanini, Alberto Angelucci, Emanuele Bernardi, Massimo Borin, Lorenza Bruno, Benedetto Bonifazi, Francesca Santini, Valeria Bacigalupo, Andrea Voso, Maria Teresa Oliva, Esther Riva, Marta Ubezio, Marta Morabito, Lucio Campagna, Alessia Saitta, Claudia Savevski, Victor Giampieri, Enrico Remondini, Daniel Passamonti, Francesco Ciceri, Fabio Bolli, Niccolò Rambaldi, Alessandro Kern, Wolfgang Kordasti, Shahram Sole, Francesc Palomo, Laura Sanz, Guillermo Santoro, Armando Platzbecker, Uwe Fenaux, Pierre Milanesi, Luciano Haferlach, Torsten Castellani, Gastone Della Porta, Matteo G. J Clin Oncol ORIGINAL REPORTS Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed. RESULTS: We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations (SF3B1, SRSF2, and U2AF1) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with SF3B1 mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within SF3B1- and SRSF2-related MDS. MDS with complex karyotype and/or TP53 gene abnormalities and MDS with acute leukemia–like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of TP53 mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features. CONCLUSION: Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis. Wolters Kluwer Health 2021-04-10 2021-02-04 /pmc/articles/PMC8078359/ /pubmed/33539200 http://dx.doi.org/10.1200/JCO.20.01659 Text en © 2021 by American Society of Clinical Oncology https://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution Non-Commercial No Derivatives 4.0 License: https://creativecommons.org/licenses/by-nc-nd/4.0/ |
spellingShingle | ORIGINAL REPORTS Bersanelli, Matteo Travaglino, Erica Meggendorfer, Manja Matteuzzi, Tommaso Sala, Claudia Mosca, Ettore Chiereghin, Chiara Di Nanni, Noemi Gnocchi, Matteo Zampini, Matteo Rossi, Marianna Maggioni, Giulia Termanini, Alberto Angelucci, Emanuele Bernardi, Massimo Borin, Lorenza Bruno, Benedetto Bonifazi, Francesca Santini, Valeria Bacigalupo, Andrea Voso, Maria Teresa Oliva, Esther Riva, Marta Ubezio, Marta Morabito, Lucio Campagna, Alessia Saitta, Claudia Savevski, Victor Giampieri, Enrico Remondini, Daniel Passamonti, Francesco Ciceri, Fabio Bolli, Niccolò Rambaldi, Alessandro Kern, Wolfgang Kordasti, Shahram Sole, Francesc Palomo, Laura Sanz, Guillermo Santoro, Armando Platzbecker, Uwe Fenaux, Pierre Milanesi, Luciano Haferlach, Torsten Castellani, Gastone Della Porta, Matteo G. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes |
title | Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes |
title_full | Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes |
title_fullStr | Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes |
title_full_unstemmed | Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes |
title_short | Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes |
title_sort | classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes |
topic | ORIGINAL REPORTS |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078359/ https://www.ncbi.nlm.nih.gov/pubmed/33539200 http://dx.doi.org/10.1200/JCO.20.01659 |
work_keys_str_mv | AT bersanellimatteo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT travaglinoerica classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT meggendorfermanja classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT matteuzzitommaso classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT salaclaudia classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT moscaettore classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT chiereghinchiara classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT dinanninoemi classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT gnocchimatteo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT zampinimatteo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT rossimarianna classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT maggionigiulia classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT termaninialberto classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT angelucciemanuele classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT bernardimassimo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT borinlorenza classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT brunobenedetto classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT bonifazifrancesca classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT santinivaleria classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT bacigalupoandrea classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT vosomariateresa classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT olivaesther classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT rivamarta classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT ubeziomarta classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT morabitolucio classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT campagnaalessia classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT saittaclaudia classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT savevskivictor classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT giampierienrico classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT remondinidaniel classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT passamontifrancesco classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT cicerifabio classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT bolliniccolo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT rambaldialessandro classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT kernwolfgang classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT kordastishahram classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT solefrancesc classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT palomolaura classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT sanzguillermo classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT santoroarmando classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT platzbeckeruwe classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT fenauxpierre classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT milanesiluciano classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT haferlachtorsten classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT castellanigastone classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes AT dellaportamatteog classificationandpersonalizedprognosticassessmentonthebasisofclinicalandgenomicfeaturesinmyelodysplasticsyndromes |