Cargando…
Evaluation of a deep learning-based computer-aided detection algorithm on chest radiographs: Case–control study
Along with recent developments in deep learning techniques, computer-aided diagnosis (CAD) has been growing rapidly in the medical imaging field. In this work, we evaluate the deep learning-based CAD algorithm (DCAD) for detecting and localizing 3 major thoracic abnormalities visible on chest radiog...
Autores principales: | Choi, Soo Yun, Park, Sunggyun, Kim, Minchul, Park, Jongchan, Choi, Ye Ra, Jin, Kwang Nam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078463/ https://www.ncbi.nlm.nih.gov/pubmed/33879750 http://dx.doi.org/10.1097/MD.0000000000025663 |
Ejemplares similares
-
Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs
por: Nam, Ju Gang, et al.
Publicado: (2021) -
Performance and educational training of radiographers in lung nodule or mass detection: Retrospective comparison with different deep learning algorithms
por: Teng, Pai-Hsueh, et al.
Publicado: (2021) -
Development and Validation of a Deep Learning–based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs
por: Hwang, Eui Jin, et al.
Publicado: (2019) -
Ultrasonographic morphological characteristics determined using a deep learning-based computer-aided diagnostic system of breast cancer
por: Kim, Young Seon, et al.
Publicado: (2022) -
Sextus chest radiograph severity score correlates to clinical outcomes in patients with COVID-19: A cross-sectional study
por: Sun, Justin, et al.
Publicado: (2021)