Cargando…
A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons
Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078667/ https://www.ncbi.nlm.nih.gov/pubmed/32286126 http://dx.doi.org/10.1080/15548627.2020.1739441 |
_version_ | 1783685087975440384 |
---|---|
author | Stathakos, Petros Jiménez-Moreno, Natalia Crompton, Lucy A. Nistor, Paul A. Badger, Jennifer L. Barbuti, Peter A Kerrigan, Talitha L. Randall, Andrew D. Caldwell, Maeve A. Lane, Jon D. |
author_facet | Stathakos, Petros Jiménez-Moreno, Natalia Crompton, Lucy A. Nistor, Paul A. Badger, Jennifer L. Barbuti, Peter A Kerrigan, Talitha L. Randall, Andrew D. Caldwell, Maeve A. Lane, Jon D. |
author_sort | Stathakos, Petros |
collection | PubMed |
description | Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) – the predominant neuronal sub-type afflicted in PD – have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells. Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4ʹ,6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco’s modified eagle’s medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin. |
format | Online Article Text |
id | pubmed-8078667 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-80786672021-05-13 A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons Stathakos, Petros Jiménez-Moreno, Natalia Crompton, Lucy A. Nistor, Paul A. Badger, Jennifer L. Barbuti, Peter A Kerrigan, Talitha L. Randall, Andrew D. Caldwell, Maeve A. Lane, Jon D. Autophagy Toolbox Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) – the predominant neuronal sub-type afflicted in PD – have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells. Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4ʹ,6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco’s modified eagle’s medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin. Taylor & Francis 2020-04-14 /pmc/articles/PMC8078667/ /pubmed/32286126 http://dx.doi.org/10.1080/15548627.2020.1739441 Text en © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Toolbox Stathakos, Petros Jiménez-Moreno, Natalia Crompton, Lucy A. Nistor, Paul A. Badger, Jennifer L. Barbuti, Peter A Kerrigan, Talitha L. Randall, Andrew D. Caldwell, Maeve A. Lane, Jon D. A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons |
title | A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons |
title_full | A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons |
title_fullStr | A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons |
title_full_unstemmed | A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons |
title_short | A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons |
title_sort | monolayer hipsc culture system for autophagy/mitophagy studies in human dopaminergic neurons |
topic | Toolbox |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078667/ https://www.ncbi.nlm.nih.gov/pubmed/32286126 http://dx.doi.org/10.1080/15548627.2020.1739441 |
work_keys_str_mv | AT stathakospetros amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT jimenezmorenonatalia amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT cromptonlucya amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT nistorpaula amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT badgerjenniferl amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT barbutipetera amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT kerrigantalithal amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT randallandrewd amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT caldwellmaevea amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT lanejond amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT stathakospetros monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT jimenezmorenonatalia monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT cromptonlucya monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT nistorpaula monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT badgerjenniferl monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT barbutipetera monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT kerrigantalithal monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT randallandrewd monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT caldwellmaevea monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons AT lanejond monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons |