Cargando…

A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative...

Descripción completa

Detalles Bibliográficos
Autores principales: Stathakos, Petros, Jiménez-Moreno, Natalia, Crompton, Lucy A., Nistor, Paul A., Badger, Jennifer L., Barbuti, Peter A, Kerrigan, Talitha L., Randall, Andrew D., Caldwell, Maeve A., Lane, Jon D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078667/
https://www.ncbi.nlm.nih.gov/pubmed/32286126
http://dx.doi.org/10.1080/15548627.2020.1739441
_version_ 1783685087975440384
author Stathakos, Petros
Jiménez-Moreno, Natalia
Crompton, Lucy A.
Nistor, Paul A.
Badger, Jennifer L.
Barbuti, Peter A
Kerrigan, Talitha L.
Randall, Andrew D.
Caldwell, Maeve A.
Lane, Jon D.
author_facet Stathakos, Petros
Jiménez-Moreno, Natalia
Crompton, Lucy A.
Nistor, Paul A.
Badger, Jennifer L.
Barbuti, Peter A
Kerrigan, Talitha L.
Randall, Andrew D.
Caldwell, Maeve A.
Lane, Jon D.
author_sort Stathakos, Petros
collection PubMed
description Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) – the predominant neuronal sub-type afflicted in PD – have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells. Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4ʹ,6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco’s modified eagle’s medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.
format Online
Article
Text
id pubmed-8078667
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-80786672021-05-13 A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons Stathakos, Petros Jiménez-Moreno, Natalia Crompton, Lucy A. Nistor, Paul A. Badger, Jennifer L. Barbuti, Peter A Kerrigan, Talitha L. Randall, Andrew D. Caldwell, Maeve A. Lane, Jon D. Autophagy Toolbox Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) – the predominant neuronal sub-type afflicted in PD – have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells. Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4ʹ,6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco’s modified eagle’s medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin. Taylor & Francis 2020-04-14 /pmc/articles/PMC8078667/ /pubmed/32286126 http://dx.doi.org/10.1080/15548627.2020.1739441 Text en © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Toolbox
Stathakos, Petros
Jiménez-Moreno, Natalia
Crompton, Lucy A.
Nistor, Paul A.
Badger, Jennifer L.
Barbuti, Peter A
Kerrigan, Talitha L.
Randall, Andrew D.
Caldwell, Maeve A.
Lane, Jon D.
A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons
title A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons
title_full A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons
title_fullStr A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons
title_full_unstemmed A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons
title_short A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons
title_sort monolayer hipsc culture system for autophagy/mitophagy studies in human dopaminergic neurons
topic Toolbox
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078667/
https://www.ncbi.nlm.nih.gov/pubmed/32286126
http://dx.doi.org/10.1080/15548627.2020.1739441
work_keys_str_mv AT stathakospetros amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT jimenezmorenonatalia amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT cromptonlucya amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT nistorpaula amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT badgerjenniferl amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT barbutipetera amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT kerrigantalithal amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT randallandrewd amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT caldwellmaevea amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT lanejond amonolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT stathakospetros monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT jimenezmorenonatalia monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT cromptonlucya monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT nistorpaula monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT badgerjenniferl monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT barbutipetera monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT kerrigantalithal monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT randallandrewd monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT caldwellmaevea monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons
AT lanejond monolayerhipscculturesystemforautophagymitophagystudiesinhumandopaminergicneurons