Cargando…
Predicting Metabolite–Disease Associations Based on LightGBM Model
Metabolites have been shown to be closely related to the occurrence and development of many complex human diseases by a large number of biological experiments; investigating their correlation mechanisms is thus an important topic, which attracts many researchers. In this work, we propose a computati...
Autores principales: | Zhang, Cheng, Lei, Xiujuan, Liu, Lian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078836/ https://www.ncbi.nlm.nih.gov/pubmed/33927752 http://dx.doi.org/10.3389/fgene.2021.660275 |
Ejemplares similares
-
Predicting potential lncRNA biomarkers for lung cancer and neuroblastoma based on an ensemble of a deep neural network and LightGBM
por: Su, Zhenguo, et al.
Publicado: (2023) -
IntSplice2: Prediction of the Splicing Effects of Intronic Single-Nucleotide Variants Using LightGBM Modeling
por: Takeda, Jun-ichi, et al.
Publicado: (2021) -
Combination predicting model of traffic congestion index in weekdays based on LightGBM-GRU
por: Cheng, Wei, et al.
Publicado: (2022) -
Prediction of air quality index based on the SSA-BiLSTM-LightGBM model
por: Zhang, Xiaowen, et al.
Publicado: (2023) -
Optimized LightGBM Power Fingerprint Identification Based on Entropy Features
por: Lin, Lin, et al.
Publicado: (2022)