Cargando…
Globally diverse Mycobacterium tuberculosis resistance acquisition: a retrospective geographical and temporal analysis of whole genome sequences
BACKGROUND: Mycobacterium tuberculosis whole genome sequencing (WGS) data can provide insights into temporal and geographical trends in resistance acquisition and inform public health interventions. We aimed to use a large clinical collection of M tuberculosis WGS and resistance phenotype data to st...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078851/ https://www.ncbi.nlm.nih.gov/pubmed/33912853 http://dx.doi.org/10.1016/s2666-5247(20)30195-6 |
Sumario: | BACKGROUND: Mycobacterium tuberculosis whole genome sequencing (WGS) data can provide insights into temporal and geographical trends in resistance acquisition and inform public health interventions. We aimed to use a large clinical collection of M tuberculosis WGS and resistance phenotype data to study how, when, and where resistance was acquired on a global scale. METHODS: We did a retrospective analysis of WGS data. We curated a set of clinical M tuberculosis isolates with high-quality sequencing and culture-based drug susceptibility data (spanning four lineages and 52 countries in Africa, Asia, the Americas, and Europe) using public databases and literature curation. For inclusion, sequence quality criteria and country of origin data were required. We constructed geographical and lineage specific M tuberculosis phylogenies and used Bayesian molecular dating with BEAST, version 1.10.4, to infer the most recent common susceptible ancestor age for 4869 instances of resistance to ten drugs. FINDINGS: Between Jan 1, 1987, and Sept 12, 2014, of 10 299 M tuberculosis clinical isolates, 8550 were curated, of which 6099 (71%) from 15 countries met criteria for molecular dating. The number of independent resistance acquisition events was lower than the number of resistant isolates across all countries, suggesting ongoing transmission of drug resistance. Ancestral age distributions supported the presence of old resistance, 20 years or more before, in most countries. A consistent order of resistance acquisition was observed globally starting with resistance to isoniazid, but resistance ancestral age varied by country. We found a direct correlation between gross domestic product per capita and resistance age (r(2)=0·47; p=0·014). Amplification of fluoroquinolone and second-line injectable resistance among multidrug-resistant isolates is estimated to have occurred very recently (median ancestral age 4·7 years [IQR 1·9–9·8] before sample collection). We found the sensitivity of commercial molecular diagnostics for second-line resistance to vary significantly by country (p<0·0003). INTERPRETATION: Our results highlight that both resistance transmission and amplification are contributing to disease burden globally but vary by country. The observation that wealthier nations are more likely to have old resistance (most recent common susceptible ancestor >20 years before isolation) suggests that programmatic improvements can reduce resistance amplification, but that fit resistant strains can circulate for decades subsequently implies the need for continued surveillance. |
---|