Cargando…

Visualizing anatomically registered data with brainrender

Three-dimensional (3D) digital brain atlases and high-throughput brain-wide imaging techniques generate large multidimensional datasets that can be registered to a common reference frame. Generating insights from such datasets depends critically on visualization and interactive data exploration, but...

Descripción completa

Detalles Bibliográficos
Autores principales: Claudi, Federico, Tyson, Adam L, Petrucco, Luigi, Margrie, Troy W, Portugues, Ruben, Branco, Tiago
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079143/
https://www.ncbi.nlm.nih.gov/pubmed/33739286
http://dx.doi.org/10.7554/eLife.65751
_version_ 1783685161362128896
author Claudi, Federico
Tyson, Adam L
Petrucco, Luigi
Margrie, Troy W
Portugues, Ruben
Branco, Tiago
author_facet Claudi, Federico
Tyson, Adam L
Petrucco, Luigi
Margrie, Troy W
Portugues, Ruben
Branco, Tiago
author_sort Claudi, Federico
collection PubMed
description Three-dimensional (3D) digital brain atlases and high-throughput brain-wide imaging techniques generate large multidimensional datasets that can be registered to a common reference frame. Generating insights from such datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently available software is dedicated to single atlases, model species or data types, and generating 3D renderings that merge anatomically registered data from diverse sources requires extensive development and programming skills. Here, we present brainrender: an open-source Python package for interactive visualization of multidimensional datasets registered to brain atlases. Brainrender facilitates the creation of complex renderings with different data types in the same visualization and enables seamless use of different atlas sources. High-quality visualizations can be used interactively and exported as high-resolution figures and animated videos. By facilitating the visualization of anatomically registered data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-wide multidimensional data.
format Online
Article
Text
id pubmed-8079143
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-80791432021-04-30 Visualizing anatomically registered data with brainrender Claudi, Federico Tyson, Adam L Petrucco, Luigi Margrie, Troy W Portugues, Ruben Branco, Tiago eLife Neuroscience Three-dimensional (3D) digital brain atlases and high-throughput brain-wide imaging techniques generate large multidimensional datasets that can be registered to a common reference frame. Generating insights from such datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently available software is dedicated to single atlases, model species or data types, and generating 3D renderings that merge anatomically registered data from diverse sources requires extensive development and programming skills. Here, we present brainrender: an open-source Python package for interactive visualization of multidimensional datasets registered to brain atlases. Brainrender facilitates the creation of complex renderings with different data types in the same visualization and enables seamless use of different atlas sources. High-quality visualizations can be used interactively and exported as high-resolution figures and animated videos. By facilitating the visualization of anatomically registered data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-wide multidimensional data. eLife Sciences Publications, Ltd 2021-03-19 /pmc/articles/PMC8079143/ /pubmed/33739286 http://dx.doi.org/10.7554/eLife.65751 Text en © 2021, Claudi et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Claudi, Federico
Tyson, Adam L
Petrucco, Luigi
Margrie, Troy W
Portugues, Ruben
Branco, Tiago
Visualizing anatomically registered data with brainrender
title Visualizing anatomically registered data with brainrender
title_full Visualizing anatomically registered data with brainrender
title_fullStr Visualizing anatomically registered data with brainrender
title_full_unstemmed Visualizing anatomically registered data with brainrender
title_short Visualizing anatomically registered data with brainrender
title_sort visualizing anatomically registered data with brainrender
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079143/
https://www.ncbi.nlm.nih.gov/pubmed/33739286
http://dx.doi.org/10.7554/eLife.65751
work_keys_str_mv AT claudifederico visualizinganatomicallyregistereddatawithbrainrender
AT tysonadaml visualizinganatomicallyregistereddatawithbrainrender
AT petruccoluigi visualizinganatomicallyregistereddatawithbrainrender
AT margrietroyw visualizinganatomicallyregistereddatawithbrainrender
AT portuguesruben visualizinganatomicallyregistereddatawithbrainrender
AT brancotiago visualizinganatomicallyregistereddatawithbrainrender