Cargando…
Building an OMOP common data model-compliant annotated corpus for COVID-19 clinical trials
Clinical trials are essential for generating reliable medical evidence, but often suffer from expensive and delayed patient recruitment because the unstructured eligibility criteria description prevents automatic query generation for eligibility screening. In response to the COVID-19 pandemic, many...
Autores principales: | Sun, Yingcheng, Butler, Alex, Stewart, Latoya A., Liu, Hao, Yuan, Chi, Southard, Christopher T., Kim, Jae Hyun, Weng, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079156/ https://www.ncbi.nlm.nih.gov/pubmed/33887457 http://dx.doi.org/10.1016/j.jbi.2021.103790 |
Ejemplares similares
-
Chia, a large annotated corpus of clinical trial eligibility criteria
por: Kury, Fabrício, et al.
Publicado: (2020) -
FHIR-Ontop-OMOP: Building clinical knowledge graphs in FHIR RDF with the OMOP Common data Model
por: Xiao, Guohui, et al.
Publicado: (2022) -
An OMOP CDM-Based Relational Database of Clinical Research Eligibility Criteria
por: Si, Yuqi, et al.
Publicado: (2017) -
The COVID-19 Trial Finder
por: Sun, Yingcheng, et al.
Publicado: (2020) -
Building an annotated corpus for automatic metadata extraction from multilingual journal article references
por: Choi, Wonjun, et al.
Publicado: (2023)