Cargando…
Synergy and allostery in ligand binding by HIV-1 Nef
The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many di...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079166/ https://www.ncbi.nlm.nih.gov/pubmed/33787846 http://dx.doi.org/10.1042/BCJ20201002 |
_version_ | 1783685166157266944 |
---|---|
author | Aldehaiman, Abdullah Momin, Afaque A. Restouin, Audrey Wang, Luyao Shi, Xiaoli Aljedani, Safia Opi, Sandrine Lugari, Adrien Shahul Hameed, Umar F. Ponchon, Luc Morelli, Xavier Huang, Mingdong Dumas, Christian Collette, Yves Arold, Stefan T. |
author_facet | Aldehaiman, Abdullah Momin, Afaque A. Restouin, Audrey Wang, Luyao Shi, Xiaoli Aljedani, Safia Opi, Sandrine Lugari, Adrien Shahul Hameed, Umar F. Ponchon, Luc Morelli, Xavier Huang, Mingdong Dumas, Christian Collette, Yves Arold, Stefan T. |
author_sort | Aldehaiman, Abdullah |
collection | PubMed |
description | The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like ‘tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target. |
format | Online Article Text |
id | pubmed-8079166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80791662021-05-06 Synergy and allostery in ligand binding by HIV-1 Nef Aldehaiman, Abdullah Momin, Afaque A. Restouin, Audrey Wang, Luyao Shi, Xiaoli Aljedani, Safia Opi, Sandrine Lugari, Adrien Shahul Hameed, Umar F. Ponchon, Luc Morelli, Xavier Huang, Mingdong Dumas, Christian Collette, Yves Arold, Stefan T. Biochem J Structural Biology The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like ‘tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target. Portland Press Ltd. 2021-04-30 2021-04-21 /pmc/articles/PMC8079166/ /pubmed/33787846 http://dx.doi.org/10.1042/BCJ20201002 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Structural Biology Aldehaiman, Abdullah Momin, Afaque A. Restouin, Audrey Wang, Luyao Shi, Xiaoli Aljedani, Safia Opi, Sandrine Lugari, Adrien Shahul Hameed, Umar F. Ponchon, Luc Morelli, Xavier Huang, Mingdong Dumas, Christian Collette, Yves Arold, Stefan T. Synergy and allostery in ligand binding by HIV-1 Nef |
title | Synergy and allostery in ligand binding by HIV-1 Nef |
title_full | Synergy and allostery in ligand binding by HIV-1 Nef |
title_fullStr | Synergy and allostery in ligand binding by HIV-1 Nef |
title_full_unstemmed | Synergy and allostery in ligand binding by HIV-1 Nef |
title_short | Synergy and allostery in ligand binding by HIV-1 Nef |
title_sort | synergy and allostery in ligand binding by hiv-1 nef |
topic | Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079166/ https://www.ncbi.nlm.nih.gov/pubmed/33787846 http://dx.doi.org/10.1042/BCJ20201002 |
work_keys_str_mv | AT aldehaimanabdullah synergyandallosteryinligandbindingbyhiv1nef AT mominafaquea synergyandallosteryinligandbindingbyhiv1nef AT restouinaudrey synergyandallosteryinligandbindingbyhiv1nef AT wangluyao synergyandallosteryinligandbindingbyhiv1nef AT shixiaoli synergyandallosteryinligandbindingbyhiv1nef AT aljedanisafia synergyandallosteryinligandbindingbyhiv1nef AT opisandrine synergyandallosteryinligandbindingbyhiv1nef AT lugariadrien synergyandallosteryinligandbindingbyhiv1nef AT shahulhameedumarf synergyandallosteryinligandbindingbyhiv1nef AT ponchonluc synergyandallosteryinligandbindingbyhiv1nef AT morellixavier synergyandallosteryinligandbindingbyhiv1nef AT huangmingdong synergyandallosteryinligandbindingbyhiv1nef AT dumaschristian synergyandallosteryinligandbindingbyhiv1nef AT colletteyves synergyandallosteryinligandbindingbyhiv1nef AT aroldstefant synergyandallosteryinligandbindingbyhiv1nef |