Cargando…
A computational approach to aid clinicians in selecting anti-viral drugs for COVID-19 trials
The year 2020 witnessed a heavy death toll due to COVID-19, calling for a global emergency. The continuous ongoing research and clinical trials paved the way for vaccines. But, the vaccine efficacy in the long run is still questionable due to the mutating coronavirus, which makes drug re-positioning...
Autores principales: | Mongia, Aanchal, Saha, Sanjay Kr., Chouzenoux, Emilie, Majumdar, Angshul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079380/ https://www.ncbi.nlm.nih.gov/pubmed/33907209 http://dx.doi.org/10.1038/s41598-021-88153-3 |
Ejemplares similares
-
Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization
por: Mongia, Aanchal, et al.
Publicado: (2020) -
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
por: Mongia, Aanchal, et al.
Publicado: (2019) -
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
FITs: forest of imputation trees for recovering true signals in single-cell open chromatin profiles
por: Sharma, Rachesh, et al.
Publicado: (2020) -
A Low-Rank Matrix Recovery Approach for Energy Efficient EEG Acquisition for a Wireless Body Area Network
por: Majumdar, Angshul, et al.
Publicado: (2014)