Cargando…
Inference of molecular orientation/ordering change nearby topological defects by the neural network function from the microscopic color information
Topological defects in liquid crystals (LCs) dominate molecular alignment/motion in many cases. Here, the neural network (NN) function has been introduced to predict the LC orientation condition (orientation angle and order parameter) at local positions around topological defects from the phase/pola...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079417/ https://www.ncbi.nlm.nih.gov/pubmed/33907228 http://dx.doi.org/10.1038/s41598-021-88535-7 |
Sumario: | Topological defects in liquid crystals (LCs) dominate molecular alignment/motion in many cases. Here, the neural network (NN) function has been introduced to predict the LC orientation condition (orientation angle and order parameter) at local positions around topological defects from the phase/polarization microscopic color images. The NN function was trained in advance by using the color information of an LC in a planar alignment cell for different orientation angles and temperatures. The photo-induced changes of LC molecules around topological defects observed by the time-resolved measurement was converted into the image sequences of the orientation angle and the order parameter change. We found that each pair of brushes with different colors around topological defects showed different orientation angle and ordering changes. The photo-induced change was triggered by the photoisomerization reaction of molecules, and one pair of brushes increased in its order parameter just after light irradiation, causing gradual rotation in the brush. The molecules in the other pair of brushes were disordered and rotated by the effect of the initially affected region. This combination approach of the time-resolved phase/polarization microscopy and the NN function can provide detailed information on the molecular alignment dynamics around the topological defects. |
---|