Cargando…
Estimating, monitoring, and forecasting COVID-19 epidemics: a spatiotemporal approach applied to NYC data
We propose a susceptible-exposed-infective-recovered-type (SEIR-type) meta-population model to simulate and monitor the (COVID-19) epidemic evolution. The basic model consists of seven categories, namely, susceptible (S), exposed (E), three infective classes, recovered (R), and deceased (D). We defi...
Autores principales: | Albani, Vinicius V. L., Velho, Roberto M., Zubelli, Jorge P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079423/ https://www.ncbi.nlm.nih.gov/pubmed/33907222 http://dx.doi.org/10.1038/s41598-021-88281-w |
Ejemplares similares
-
Nowcasting and forecasting COVID-19 waves: the recursive and stochastic nature of transmission
por: Albani, V. V. L., et al.
Publicado: (2022) -
Application of a Bayesian Spatiotemporal Surveillance Method to NYC Syndromic Data
por: Levin-Rector, Alison, et al.
Publicado: (2014) -
The impact of COVID-19 vaccination delay: A data-driven modeling analysis for Chicago and New York City
por: Albani, Vinicius V.L., et al.
Publicado: (2021) -
COVID-19 underreporting and its impact on vaccination strategies
por: Albani, Vinicius, et al.
Publicado: (2021) -
On the role of financial support programs in mitigating the SARS-CoV-2 spread in Brazil
por: Albani, Vinicius V. L., et al.
Publicado: (2022)