Cargando…

The ANTsX ecosystem for quantitative biological and medical imaging

The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, AN...

Descripción completa

Detalles Bibliográficos
Autores principales: Tustison, Nicholas J., Cook, Philip A., Holbrook, Andrew J., Johnson, Hans J., Muschelli, John, Devenyi, Gabriel A., Duda, Jeffrey T., Das, Sandhitsu R., Cullen, Nicholas C., Gillen, Daniel L., Yassa, Michael A., Stone, James R., Gee, James C., Avants, Brian B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079440/
https://www.ncbi.nlm.nih.gov/pubmed/33907199
http://dx.doi.org/10.1038/s41598-021-87564-6
_version_ 1783685230843920384
author Tustison, Nicholas J.
Cook, Philip A.
Holbrook, Andrew J.
Johnson, Hans J.
Muschelli, John
Devenyi, Gabriel A.
Duda, Jeffrey T.
Das, Sandhitsu R.
Cullen, Nicholas C.
Gillen, Daniel L.
Yassa, Michael A.
Stone, James R.
Gee, James C.
Avants, Brian B.
author_facet Tustison, Nicholas J.
Cook, Philip A.
Holbrook, Andrew J.
Johnson, Hans J.
Muschelli, John
Devenyi, Gabriel A.
Duda, Jeffrey T.
Das, Sandhitsu R.
Cullen, Nicholas C.
Gillen, Daniel L.
Yassa, Michael A.
Stone, James R.
Gee, James C.
Avants, Brian B.
author_sort Tustison, Nicholas J.
collection PubMed
description The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis.
format Online
Article
Text
id pubmed-8079440
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-80794402021-04-28 The ANTsX ecosystem for quantitative biological and medical imaging Tustison, Nicholas J. Cook, Philip A. Holbrook, Andrew J. Johnson, Hans J. Muschelli, John Devenyi, Gabriel A. Duda, Jeffrey T. Das, Sandhitsu R. Cullen, Nicholas C. Gillen, Daniel L. Yassa, Michael A. Stone, James R. Gee, James C. Avants, Brian B. Sci Rep Article The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis. Nature Publishing Group UK 2021-04-27 /pmc/articles/PMC8079440/ /pubmed/33907199 http://dx.doi.org/10.1038/s41598-021-87564-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Tustison, Nicholas J.
Cook, Philip A.
Holbrook, Andrew J.
Johnson, Hans J.
Muschelli, John
Devenyi, Gabriel A.
Duda, Jeffrey T.
Das, Sandhitsu R.
Cullen, Nicholas C.
Gillen, Daniel L.
Yassa, Michael A.
Stone, James R.
Gee, James C.
Avants, Brian B.
The ANTsX ecosystem for quantitative biological and medical imaging
title The ANTsX ecosystem for quantitative biological and medical imaging
title_full The ANTsX ecosystem for quantitative biological and medical imaging
title_fullStr The ANTsX ecosystem for quantitative biological and medical imaging
title_full_unstemmed The ANTsX ecosystem for quantitative biological and medical imaging
title_short The ANTsX ecosystem for quantitative biological and medical imaging
title_sort antsx ecosystem for quantitative biological and medical imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079440/
https://www.ncbi.nlm.nih.gov/pubmed/33907199
http://dx.doi.org/10.1038/s41598-021-87564-6
work_keys_str_mv AT tustisonnicholasj theantsxecosystemforquantitativebiologicalandmedicalimaging
AT cookphilipa theantsxecosystemforquantitativebiologicalandmedicalimaging
AT holbrookandrewj theantsxecosystemforquantitativebiologicalandmedicalimaging
AT johnsonhansj theantsxecosystemforquantitativebiologicalandmedicalimaging
AT muschellijohn theantsxecosystemforquantitativebiologicalandmedicalimaging
AT devenyigabriela theantsxecosystemforquantitativebiologicalandmedicalimaging
AT dudajeffreyt theantsxecosystemforquantitativebiologicalandmedicalimaging
AT dassandhitsur theantsxecosystemforquantitativebiologicalandmedicalimaging
AT cullennicholasc theantsxecosystemforquantitativebiologicalandmedicalimaging
AT gillendaniell theantsxecosystemforquantitativebiologicalandmedicalimaging
AT yassamichaela theantsxecosystemforquantitativebiologicalandmedicalimaging
AT stonejamesr theantsxecosystemforquantitativebiologicalandmedicalimaging
AT geejamesc theantsxecosystemforquantitativebiologicalandmedicalimaging
AT avantsbrianb theantsxecosystemforquantitativebiologicalandmedicalimaging
AT tustisonnicholasj antsxecosystemforquantitativebiologicalandmedicalimaging
AT cookphilipa antsxecosystemforquantitativebiologicalandmedicalimaging
AT holbrookandrewj antsxecosystemforquantitativebiologicalandmedicalimaging
AT johnsonhansj antsxecosystemforquantitativebiologicalandmedicalimaging
AT muschellijohn antsxecosystemforquantitativebiologicalandmedicalimaging
AT devenyigabriela antsxecosystemforquantitativebiologicalandmedicalimaging
AT dudajeffreyt antsxecosystemforquantitativebiologicalandmedicalimaging
AT dassandhitsur antsxecosystemforquantitativebiologicalandmedicalimaging
AT cullennicholasc antsxecosystemforquantitativebiologicalandmedicalimaging
AT gillendaniell antsxecosystemforquantitativebiologicalandmedicalimaging
AT yassamichaela antsxecosystemforquantitativebiologicalandmedicalimaging
AT stonejamesr antsxecosystemforquantitativebiologicalandmedicalimaging
AT geejamesc antsxecosystemforquantitativebiologicalandmedicalimaging
AT avantsbrianb antsxecosystemforquantitativebiologicalandmedicalimaging