Cargando…
The promising performance of manganese gluconate as a liquid redox sulfur recovery agent against oxidative degradation
This work studied the oxidative degradation performance of manganese gluconate as a liquid redox sulfur recovery (LRSR) agent. The degradation of gluconate in an aerated sulfide containing 0.1 M manganese/0.8 M gluconate/pH 13 solution was 11% in 47 h and 20% in 100 h of reaction time. With the tota...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079466/ https://www.ncbi.nlm.nih.gov/pubmed/33937541 http://dx.doi.org/10.1016/j.heliyon.2021.e06743 |
Sumario: | This work studied the oxidative degradation performance of manganese gluconate as a liquid redox sulfur recovery (LRSR) agent. The degradation of gluconate in an aerated sulfide containing 0.1 M manganese/0.8 M gluconate/pH 13 solution was 11% in 47 h and 20% in 100 h of reaction time. With the total price of chelates being more or less comparable, these were superior to the degradation resistance of EDTA chelate in a solution of 0.1 M iron/0.2 M EDTA/pH 8 which degraded by about 30% in 47 h, and NTA in Fe-NTA (0.1 M metal/0.2 M chelate/pH 6.5), which was degraded by 40% in 100 h of reaction time. At pH of 13, 0.1 M Metal, and 0.8 M gluconate, manganese degraded gluconate more severely than iron and copper. At a lower chelate to metal molar ratio (RCM) of 2 and as well as at a lower pH of 10, the manganese gluconate degradation, expressed as relative concentration to its initial concentration, was faster than at RCM of 8 and pH of 13. All of these observations can be explained among others by the well-known Fenton reaction hydroxyl radicals mechanism as the main cause of the degradation process. |
---|