Cargando…

Rational Adaptation in Lexical Prediction: The Influence of Prediction Strength

Recent studies indicate that the processing of an unexpected word is costly when the initial, disconfirmed prediction was strong. This penalty was suggested to stem from commitment to the strongly predicted word, requiring its inhibition when disconfirmed. Additional studies show that comprehenders...

Descripción completa

Detalles Bibliográficos
Autores principales: Ness, Tal, Meltzer-Asscher, Aya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079758/
https://www.ncbi.nlm.nih.gov/pubmed/33935874
http://dx.doi.org/10.3389/fpsyg.2021.622873
Descripción
Sumario:Recent studies indicate that the processing of an unexpected word is costly when the initial, disconfirmed prediction was strong. This penalty was suggested to stem from commitment to the strongly predicted word, requiring its inhibition when disconfirmed. Additional studies show that comprehenders rationally adapt their predictions in different situations. In the current study, we hypothesized that since the disconfirmation of strong predictions incurs costs, it would also trigger adaptation mechanisms influencing the processing of subsequent (potentially) strong predictions. In two experiments (in Hebrew and English), participants made speeded congruency judgments on two-word phrases in which the first word was either highly constraining (e.g., “climate,” which strongly predicts “change”) or not (e.g., “vegetable,” which does not have any highly probable completion). We manipulated the proportion of disconfirmed predictions in highly constraining contexts between participants. The results provide additional evidence of the costs associated with the disconfirmation of strong predictions. Moreover, they show a reduction in these costs when participants experience a high proportion of disconfirmed strong predictions throughout the experiment, indicating that participants adjust the strength of their predictions when strong prediction is discouraged. We formulate a Bayesian adaptation model whereby prediction failure cost is weighted by the participant’s belief (updated on each trial) about the likelihood of encountering the expected word, and show that it accounts for the trial-by-trial data.