Cargando…
Using General-purpose Sentiment Lexicons for Suicide Risk Assessment in Electronic Health Records: Corpus-Based Analysis
BACKGROUND: Suicide is a serious public health issue, accounting for 1.4% of all deaths worldwide. Current risk assessment tools are reported as performing little better than chance in predicting suicide. New methods for studying dynamic features in electronic health records (EHRs) are being increas...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080148/ https://www.ncbi.nlm.nih.gov/pubmed/33847595 http://dx.doi.org/10.2196/22397 |
_version_ | 1783685369409044480 |
---|---|
author | Bittar, André Velupillai, Sumithra Roberts, Angus Dutta, Rina |
author_facet | Bittar, André Velupillai, Sumithra Roberts, Angus Dutta, Rina |
author_sort | Bittar, André |
collection | PubMed |
description | BACKGROUND: Suicide is a serious public health issue, accounting for 1.4% of all deaths worldwide. Current risk assessment tools are reported as performing little better than chance in predicting suicide. New methods for studying dynamic features in electronic health records (EHRs) are being increasingly explored. One avenue of research involves using sentiment analysis to examine clinicians’ subjective judgments when reporting on patients. Several recent studies have used general-purpose sentiment analysis tools to automatically identify negative and positive words within EHRs to test correlations between sentiment extracted from the texts and specific medical outcomes (eg, risk of suicide or in-hospital mortality). However, little attention has been paid to analyzing the specific words identified by general-purpose sentiment lexicons when applied to EHR corpora. OBJECTIVE: This study aims to quantitatively and qualitatively evaluate the coverage of six general-purpose sentiment lexicons against a corpus of EHR texts to ascertain the extent to which such lexical resources are fit for use in suicide risk assessment. METHODS: The data for this study were a corpus of 198,451 EHR texts made up of two subcorpora drawn from a 1:4 case-control study comparing clinical notes written over the period leading up to a suicide attempt (cases, n=2913) with those not preceding such an attempt (controls, n=14,727). We calculated word frequency distributions within each subcorpus to identify representative keywords for both the case and control subcorpora. We quantified the relative coverage of the 6 lexicons with respect to this list of representative keywords in terms of weighted precision, recall, and F score. RESULTS: The six lexicons achieved reasonable precision (0.53-0.68) but very low recall (0.04-0.36). Many of the most representative keywords in the suicide-related (case) subcorpus were not identified by any of the lexicons. The sentiment-bearing status of these keywords for this use case is thus doubtful. CONCLUSIONS: Our findings indicate that these 6 sentiment lexicons are not optimal for use in suicide risk assessment. We propose a set of guidelines for the creation of more suitable lexical resources for distinguishing suicide-related from non–suicide-related EHR texts. |
format | Online Article Text |
id | pubmed-8080148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-80801482021-05-06 Using General-purpose Sentiment Lexicons for Suicide Risk Assessment in Electronic Health Records: Corpus-Based Analysis Bittar, André Velupillai, Sumithra Roberts, Angus Dutta, Rina JMIR Med Inform Original Paper BACKGROUND: Suicide is a serious public health issue, accounting for 1.4% of all deaths worldwide. Current risk assessment tools are reported as performing little better than chance in predicting suicide. New methods for studying dynamic features in electronic health records (EHRs) are being increasingly explored. One avenue of research involves using sentiment analysis to examine clinicians’ subjective judgments when reporting on patients. Several recent studies have used general-purpose sentiment analysis tools to automatically identify negative and positive words within EHRs to test correlations between sentiment extracted from the texts and specific medical outcomes (eg, risk of suicide or in-hospital mortality). However, little attention has been paid to analyzing the specific words identified by general-purpose sentiment lexicons when applied to EHR corpora. OBJECTIVE: This study aims to quantitatively and qualitatively evaluate the coverage of six general-purpose sentiment lexicons against a corpus of EHR texts to ascertain the extent to which such lexical resources are fit for use in suicide risk assessment. METHODS: The data for this study were a corpus of 198,451 EHR texts made up of two subcorpora drawn from a 1:4 case-control study comparing clinical notes written over the period leading up to a suicide attempt (cases, n=2913) with those not preceding such an attempt (controls, n=14,727). We calculated word frequency distributions within each subcorpus to identify representative keywords for both the case and control subcorpora. We quantified the relative coverage of the 6 lexicons with respect to this list of representative keywords in terms of weighted precision, recall, and F score. RESULTS: The six lexicons achieved reasonable precision (0.53-0.68) but very low recall (0.04-0.36). Many of the most representative keywords in the suicide-related (case) subcorpus were not identified by any of the lexicons. The sentiment-bearing status of these keywords for this use case is thus doubtful. CONCLUSIONS: Our findings indicate that these 6 sentiment lexicons are not optimal for use in suicide risk assessment. We propose a set of guidelines for the creation of more suitable lexical resources for distinguishing suicide-related from non–suicide-related EHR texts. JMIR Publications 2021-04-13 /pmc/articles/PMC8080148/ /pubmed/33847595 http://dx.doi.org/10.2196/22397 Text en ©André Bittar, Sumithra Velupillai, Angus Roberts, Rina Dutta. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2021. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Bittar, André Velupillai, Sumithra Roberts, Angus Dutta, Rina Using General-purpose Sentiment Lexicons for Suicide Risk Assessment in Electronic Health Records: Corpus-Based Analysis |
title | Using General-purpose Sentiment Lexicons for Suicide Risk Assessment in Electronic Health Records: Corpus-Based Analysis |
title_full | Using General-purpose Sentiment Lexicons for Suicide Risk Assessment in Electronic Health Records: Corpus-Based Analysis |
title_fullStr | Using General-purpose Sentiment Lexicons for Suicide Risk Assessment in Electronic Health Records: Corpus-Based Analysis |
title_full_unstemmed | Using General-purpose Sentiment Lexicons for Suicide Risk Assessment in Electronic Health Records: Corpus-Based Analysis |
title_short | Using General-purpose Sentiment Lexicons for Suicide Risk Assessment in Electronic Health Records: Corpus-Based Analysis |
title_sort | using general-purpose sentiment lexicons for suicide risk assessment in electronic health records: corpus-based analysis |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080148/ https://www.ncbi.nlm.nih.gov/pubmed/33847595 http://dx.doi.org/10.2196/22397 |
work_keys_str_mv | AT bittarandre usinggeneralpurposesentimentlexiconsforsuicideriskassessmentinelectronichealthrecordscorpusbasedanalysis AT velupillaisumithra usinggeneralpurposesentimentlexiconsforsuicideriskassessmentinelectronichealthrecordscorpusbasedanalysis AT robertsangus usinggeneralpurposesentimentlexiconsforsuicideriskassessmentinelectronichealthrecordscorpusbasedanalysis AT duttarina usinggeneralpurposesentimentlexiconsforsuicideriskassessmentinelectronichealthrecordscorpusbasedanalysis |