Cargando…
Assessment of Overuse of Medical Tests and Treatments at US Hospitals Using Medicare Claims
IMPORTANCE: Overuse of health care services exposes patients to unnecessary risk of harm and costs. Distinguishing patterns of overuse among hospitals requires hospital-level measures across multiple services. OBJECTIVE: To describe characteristics of hospitals associated with overuse of health care...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080218/ https://www.ncbi.nlm.nih.gov/pubmed/33904912 http://dx.doi.org/10.1001/jamanetworkopen.2021.8075 |
Sumario: | IMPORTANCE: Overuse of health care services exposes patients to unnecessary risk of harm and costs. Distinguishing patterns of overuse among hospitals requires hospital-level measures across multiple services. OBJECTIVE: To describe characteristics of hospitals associated with overuse of health care services in the US. DESIGN, SETTING, AND PARTICIPANTS: This retrospective cross-sectional analysis used Medicare fee-for-service claims data for beneficiaries older than 65 years from January 1, 2015, to December 31, 2017, with a lookback of 1 year. Inpatient and outpatient services were included, and services offered at specialty and federal hospitals were excluded. Patients were from hospitals with the capacity (based on a claims filter developed for this study) to perform at least 7 of 12 investigated services. Statistical analyses were performed from July 1, 2020, to December 20, 2020. MAIN OUTCOMES AND MEASURES: Outcomes of interest were a composite overuse score ranging from 0 (no overuse of services) to 1 (relatively high overuse of services) and characteristics of hospitals clustered by overuse rates. Twelve published low-value service algorithms were applied to the data to find overuse rates for each hospital, normalized and aggregated to a composite score and then compared across 6 hospital characteristics using multivariable regression. A k-means cluster analysis was used on normalized overuse rates to identify hospital clusters. RESULTS: The primary analysis was performed on 2415 cohort A hospitals (ie, hospitals with capacity for 7 or more services), which included 1 263 592 patients (mean [SD] age, 72.4 [14] years; 678 549 women [53.7%]; 101 017 191 White patients [80.5%]). Head imaging for syncope was the highest-volume low-value service (377 745 patients [29.9%]), followed by coronary artery stenting for stable coronary disease (199 579 [15.8%]). The mean (SD) composite overuse score was 0.40 (0.10) points. Southern hospitals had a higher mean score than midwestern (difference in means: 0.06 [95% CI, 0.05-0.07] points; P < .001), northeast (0.08 [95% CI, 0.06-0.09] points; P < .001), and western hospitals (0.08 [95% CI, 0.07-0.10] points; P < .001). Nonprofit hospitals had a lower adjusted mean score than for-profit hospitals (−0.03 [95% CI, −0.04 to −0.02] points; P < .001). Major teaching hospitals had significantly lower adjusted mean overuse scores vs minor teaching hospitals (difference in means, −0.07 [95% CI, −0.08 to −0.06] points; P < .001) and nonteaching hospitals (−0.10 [95% CI, −0.12 to −0.09] points; P < .001). Of the 4 clusters identified, 1 was characterized by its low counts of overuse in all services except for spinal fusion; the majority of major teaching hospitals were in this cluster (164 of 223 major teaching hospitals [73.5%]). CONCLUSIONS AND RELEVANCE: This cross-sectional study used a novel measurement of hospital-associated overuse; results showed that the highest scores in this Medicare population were associated with nonteaching and for-profit hospitals, particularly in the South. |
---|