Cargando…
An architecture for non-linear discovery of aggregated multimedia document web search results
The recent proliferation of multimedia information on the web enhances user information need from simple textual lookup to multi-modal exploration activities. The current search engines act as major gateways to access the immense amount of multimedia data. However, access to the multimedia content i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080422/ https://www.ncbi.nlm.nih.gov/pubmed/33981832 http://dx.doi.org/10.7717/peerj-cs.449 |
Sumario: | The recent proliferation of multimedia information on the web enhances user information need from simple textual lookup to multi-modal exploration activities. The current search engines act as major gateways to access the immense amount of multimedia data. However, access to the multimedia content is provided by aggregating disjoint multimedia search verticals. The aggregation of the multimedia search results cannot consider relationships in them and are partially blended. Additionally, the search results’ presentation is via linear lists, which cannot support the users’ non-linear navigation patterns to explore the multimedia search results. Contrarily, users’ are demanding more services from search engines. It includes adequate access to navigate, explore, and discover multimedia information. Our discovery approach allow users to explore and discover multimedia information by semantically aggregating disjoint verticals using sentence embeddings and transforming snippets into conceptually similar multimedia document groups. The proposed aggregation approach retains the relationship in the retrieved multimedia search results. A non-linear graph is instantiated to augment the users’ non-linear information navigation and exploration patterns, which leads to discovering new and interesting search results at various aggregated granularity levels. Our method’s empirical evaluation results achieve 99% accuracy in the aggregation of disjoint search results at different aggregated search granularity levels. Our approach provides a standard baseline for the exploration of multimedia aggregation search results. |
---|