Cargando…
ST-AFN: a spatial-temporal attention based fusion network for lane-level traffic flow prediction
Traffic flow prediction is the foundation of many applications in smart cities, and the granular precision of traffic flow prediction has to be enhanced with refined applications. However, most of the existing researches cannot meet these requirements. In this paper, we propose a spatial-temporal at...
Autores principales: | Shen, Guojiang, Yu, Kaifeng, Zhang, Meiyu, Kong, Xiangjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080424/ https://www.ncbi.nlm.nih.gov/pubmed/33981838 http://dx.doi.org/10.7717/peerj-cs.470 |
Ejemplares similares
-
Coordinated ramp signal optimization framework based on time series flux-correlation analysis
por: Liu, Zhi, et al.
Publicado: (2021) -
Traffic flow simulation of modified cellular automata model based on producer-consumer algorithm
por: Deng, Xuefeng, et al.
Publicado: (2022) -
Skill ranking of researchers via hypergraph
por: Kong, Xiangjie, et al.
Publicado: (2019) -
Player-aware resource compensation in interrupted cricket matches
por: Zia, Salam, et al.
Publicado: (2022) -
Secure and dynamic access control for the Internet of Things (IoT) based traffic system
por: Aftab, Muhammad Umar, et al.
Publicado: (2021)