Cargando…
Utility metric for unsupervised feature selection
Feature selection techniques are very useful approaches for dimensionality reduction in data analysis. They provide interpretable results by reducing the dimensions of the data to a subset of the original set of features. When the data lack annotations, unsupervised feature selectors are required fo...
Autores principales: | Villa, Amalia, Mundanad Narayanan, Abhijith, Van Huffel, Sabine, Bertrand, Alexander, Varon, Carolina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080425/ https://www.ncbi.nlm.nih.gov/pubmed/33981839 http://dx.doi.org/10.7717/peerj-cs.477 |
Ejemplares similares
-
Matching sensor ontologies with unsupervised neural network with competitive learning
por: Xue, Xingsi, et al.
Publicado: (2021) -
Unsupervised query reduction for efficient yet effective news background linking
por: Essam, Marwa, et al.
Publicado: (2023) -
Identifying bias in network clustering quality metrics
por: Renedo-Mirambell, Martí, et al.
Publicado: (2023) -
On component-wise dissimilarity measures and metric properties in pattern recognition
por: De Santis, Enrico, et al.
Publicado: (2022) -
Exclusive use and evaluation of inheritance metrics viability in software fault prediction—an experimental study
por: Aziz, Syed Rashid, et al.
Publicado: (2021)