Cargando…

Early satellite cell communication creates a permissive environment for long-term muscle growth

Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV c...

Descripción completa

Detalles Bibliográficos
Autores principales: Murach, Kevin A., Peck, Bailey D., Policastro, Robert A., Vechetti, Ivan J., Van Pelt, Douglas W., Dungan, Cory M., Denes, Lance T., Fu, Xu, Brightwell, Camille R., Zentner, Gabriel E., Dupont-Versteegden, Esther E., Richards, Christopher I., Smith, Jeramiah J., Fry, Christopher S., McCarthy, John J., Peterson, Charlotte A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080523/
https://www.ncbi.nlm.nih.gov/pubmed/33948557
http://dx.doi.org/10.1016/j.isci.2021.102372
_version_ 1783685444390617088
author Murach, Kevin A.
Peck, Bailey D.
Policastro, Robert A.
Vechetti, Ivan J.
Van Pelt, Douglas W.
Dungan, Cory M.
Denes, Lance T.
Fu, Xu
Brightwell, Camille R.
Zentner, Gabriel E.
Dupont-Versteegden, Esther E.
Richards, Christopher I.
Smith, Jeramiah J.
Fry, Christopher S.
McCarthy, John J.
Peterson, Charlotte A.
author_facet Murach, Kevin A.
Peck, Bailey D.
Policastro, Robert A.
Vechetti, Ivan J.
Van Pelt, Douglas W.
Dungan, Cory M.
Denes, Lance T.
Fu, Xu
Brightwell, Camille R.
Zentner, Gabriel E.
Dupont-Versteegden, Esther E.
Richards, Christopher I.
Smith, Jeramiah J.
Fry, Christopher S.
McCarthy, John J.
Peterson, Charlotte A.
author_sort Murach, Kevin A.
collection PubMed
description Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses Wisp1 expression required for appropriate ECM remodeling. Late-stage communication from myogenic cells during loading is widespread but may be targeted toward endothelial cells. Satellite cells coordinate adaptation by influencing the phenotype of recipient cells, which extends our understanding of their role in muscle adaptation beyond regeneration and myonuclear donation.
format Online
Article
Text
id pubmed-8080523
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-80805232021-05-03 Early satellite cell communication creates a permissive environment for long-term muscle growth Murach, Kevin A. Peck, Bailey D. Policastro, Robert A. Vechetti, Ivan J. Van Pelt, Douglas W. Dungan, Cory M. Denes, Lance T. Fu, Xu Brightwell, Camille R. Zentner, Gabriel E. Dupont-Versteegden, Esther E. Richards, Christopher I. Smith, Jeramiah J. Fry, Christopher S. McCarthy, John J. Peterson, Charlotte A. iScience Article Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses Wisp1 expression required for appropriate ECM remodeling. Late-stage communication from myogenic cells during loading is widespread but may be targeted toward endothelial cells. Satellite cells coordinate adaptation by influencing the phenotype of recipient cells, which extends our understanding of their role in muscle adaptation beyond regeneration and myonuclear donation. Elsevier 2021-03-29 /pmc/articles/PMC8080523/ /pubmed/33948557 http://dx.doi.org/10.1016/j.isci.2021.102372 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Murach, Kevin A.
Peck, Bailey D.
Policastro, Robert A.
Vechetti, Ivan J.
Van Pelt, Douglas W.
Dungan, Cory M.
Denes, Lance T.
Fu, Xu
Brightwell, Camille R.
Zentner, Gabriel E.
Dupont-Versteegden, Esther E.
Richards, Christopher I.
Smith, Jeramiah J.
Fry, Christopher S.
McCarthy, John J.
Peterson, Charlotte A.
Early satellite cell communication creates a permissive environment for long-term muscle growth
title Early satellite cell communication creates a permissive environment for long-term muscle growth
title_full Early satellite cell communication creates a permissive environment for long-term muscle growth
title_fullStr Early satellite cell communication creates a permissive environment for long-term muscle growth
title_full_unstemmed Early satellite cell communication creates a permissive environment for long-term muscle growth
title_short Early satellite cell communication creates a permissive environment for long-term muscle growth
title_sort early satellite cell communication creates a permissive environment for long-term muscle growth
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080523/
https://www.ncbi.nlm.nih.gov/pubmed/33948557
http://dx.doi.org/10.1016/j.isci.2021.102372
work_keys_str_mv AT murachkevina earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT peckbaileyd earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT policastroroberta earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT vechettiivanj earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT vanpeltdouglasw earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT dungancorym earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT deneslancet earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT fuxu earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT brightwellcamiller earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT zentnergabriele earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT dupontversteegdenesthere earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT richardschristopheri earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT smithjeramiahj earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT frychristophers earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT mccarthyjohnj earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth
AT petersoncharlottea earlysatellitecellcommunicationcreatesapermissiveenvironmentforlongtermmusclegrowth