Cargando…

Providing an optimized model to detect driver genes from heterogeneous cancer samples using restriction in subspace learning

Extracting the drivers from genes with mutation, and segregation of driver and passenger genes are known as the most controversial issues in cancer studies. According to the heterogeneity of cancer, it is not possible to identify indicators under a group of associated drivers, in order to identify a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ebadi, Ali Reza, Soleimani, Ali, Ghaderzadeh, Abdulbaghi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080706/
https://www.ncbi.nlm.nih.gov/pubmed/33911156
http://dx.doi.org/10.1038/s41598-021-88548-2
Descripción
Sumario:Extracting the drivers from genes with mutation, and segregation of driver and passenger genes are known as the most controversial issues in cancer studies. According to the heterogeneity of cancer, it is not possible to identify indicators under a group of associated drivers, in order to identify a group of patients with diseases related to these subgroups. Therefore, the precise identification of the related driver genes using artificial intelligence techniques is still considered as a challenge for researchers. In this research, a new method has been developed using the subspace learning method, unsupervised learning, and with more constraints. Accordingly, it has been attempted to extract the driver genes with more precision and accurate results. The obtained results show that the proposed method is more to predict the driver genes and subgroups of driver genes which have the highest degree of overlap due to p-value with known driver genes in valid databases. Driver genes are the benchmark of MsigDB which have more overlap compared to them as selected driver genes. In this article, in addition to including the driver genes defined in previous work, introduce newer driver genes. The minister will define newer groups of driver genes compared to other methods the p-value of the proposed method was 9.21e-7 better than previous methods for 200 genes. Due to the overlap and newer driver genes and driver gene group and subgroups. The results show that the p value of the proposed method is about 2.7 times less than the driver sub method due to overlap, indicating that the proposed method can identify driver genes in cancerous tumors with greater accuracy and reliability.