Cargando…
Providing an optimized model to detect driver genes from heterogeneous cancer samples using restriction in subspace learning
Extracting the drivers from genes with mutation, and segregation of driver and passenger genes are known as the most controversial issues in cancer studies. According to the heterogeneity of cancer, it is not possible to identify indicators under a group of associated drivers, in order to identify a...
Autores principales: | Ebadi, Ali Reza, Soleimani, Ali, Ghaderzadeh, Abdulbaghi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080706/ https://www.ncbi.nlm.nih.gov/pubmed/33911156 http://dx.doi.org/10.1038/s41598-021-88548-2 |
Ejemplares similares
-
Incorporating Heterogeneous Features into the Random Subspace Method for Bearing Fault Diagnosis
por: Chu, Yan, et al.
Publicado: (2023) -
Subspace-by-subspace preconditioners for structured linear systems
por: Daydé, M J, et al.
Publicado: (1998) -
Multitask learning over shared subspaces
por: Menghi, Nicholas, et al.
Publicado: (2021) -
On iterated-subspace minimization methods for nonlinear optimization
por: Conn, A R, et al.
Publicado: (1994) -
Inference for Multiple Heterogeneous Networks with a Common Invariant Subspace
por: Arroyo, Jesús, et al.
Publicado: (2021)