Cargando…

Clinical diagnosis of severe COVID-19: A derivation and validation of a prediction rule

BACKGROUND: The widespread coronavirus disease 2019 (COVID-19) has led to high morbidity and mortality. Therefore, early risk identification of critically ill patients remains crucial. AIM: To develop predictive rules at the time of admission to identify COVID-19 patients who might require intensive...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Ming, Yu, Xia-Xia, Huang, Jia, Gao, Jun-Ling, Cen, Fu-Lan, Xiao, Qi, Fu, Shou-Zhi, Yang, Yang, Xiong, Bo, Pan, Yong-Jun, Liu, Ying-Xia, Feng, Yong-Wen, Li, Jin-Xiu, Liu, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080753/
https://www.ncbi.nlm.nih.gov/pubmed/33969085
http://dx.doi.org/10.12998/wjcc.v9.i13.2994
Descripción
Sumario:BACKGROUND: The widespread coronavirus disease 2019 (COVID-19) has led to high morbidity and mortality. Therefore, early risk identification of critically ill patients remains crucial. AIM: To develop predictive rules at the time of admission to identify COVID-19 patients who might require intensive care unit (ICU) care. METHODS: This retrospective study included a total of 361 patients with confirmed COVID-19 by reverse transcription-polymerase chain reaction between January 19, 2020, and March 14, 2020 in Shenzhen Third People’s Hospital. Multivariate logistic regression was applied to develop the predictive model. The performance of the predictive model was externally validated and evaluated based on a dataset involving 126 patients from the Wuhan Asia General Hospital between December 2019 and March 2020, by area under the receiver operating curve (AUROC), goodness-of-fit and the performance matrix including the sensitivity, specificity, and precision. A nomogram was also used to visualize the model. RESULTS: Among the patients in the derivation and validation datasets, 38 and 9 participants (10.5% and 2.54%, respectively) developed severe COVID-19, respectively. In univariate analysis, 21 parameters such as age, sex (male), smoker, body mass index (BMI), time from onset to admission (> 5 d), asthenia, dry cough, expectoration, shortness of breath, asthenia, and Rox index < 18 (pulse oxygen saturation, SpO(2))/(FiO(2 )× respiratory rate, RR) showed positive correlations with severe COVID-19. In multivariate logistic regression analysis, only six parameters including BMI [odds ratio (OR) 3.939; 95% confidence interval (CI): 1.409-11.015; P = 0.009], time from onset to admission (≥ 5 d) (OR 7.107; 95%CI: 1.449-34.849; P = 0.016), fever (OR 6.794; 95%CI: 1.401-32.951; P = 0.017), Charlson index (OR 2.917; 95%CI: 1.279-6.654; P = 0.011), PaO(2)/FiO(2) ratio (OR 17.570; 95%CI: 1.117-276.383; P = 0.041), and neutrophil/lymphocyte ratio (OR 3.574; 95%CI: 1.048-12.191; P = 0.042) were found to be independent predictors of COVID-19. These factors were found to be significant risk factors for severe patients confirmed with COVID-19. The AUROC was 0.941 (95%CI: 0.901-0.981) and 0.936 (95%CI: 0.886-0.987) in both datasets. The calibration properties were good. CONCLUSION: The proposed predictive model had great potential in severity prediction of COVID-19 in the ICU. It assisted the ICU clinicians in making timely decisions for the target population.