Cargando…
Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer’s Disease
Combining multi-modality data for brain disease diagnosis such as Alzheimer’s disease (AD) commonly leads to improved performance than those using a single modality. However, it is still challenging to train a multi-modality model since it is difficult in clinical practice to obtain complete data th...
Autores principales: | Lin, Wanyun, Lin, Weiming, Chen, Gang, Zhang, Hejun, Gao, Qinquan, Huang, Yechong, Tong, Tong, Du, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080880/ https://www.ncbi.nlm.nih.gov/pubmed/33935634 http://dx.doi.org/10.3389/fnins.2021.646013 |
Ejemplares similares
-
Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment
por: Lin, Weiming, et al.
Publicado: (2018) -
Diagnosis of Alzheimer’s Disease via Multi-Modality 3D Convolutional Neural Network
por: Huang, Yechong, et al.
Publicado: (2019) -
Predicting Alzheimer’s Disease Conversion From Mild Cognitive Impairment Using an Extreme Learning Machine-Based Grading Method With Multimodal Data
por: Lin, Weiming, et al.
Publicado: (2020) -
Digital twins based on bidirectional LSTM and GAN for modelling the COVID-19 pandemic
por: Quilodrán-Casas, César, et al.
Publicado: (2022) -
FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy
por: Gao, Qinquan, et al.
Publicado: (2017)