Cargando…
CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High-Energy Physics
One of the challenges of high granularity calorimeters, such as that to be built to cover the endcap region in the CMS Phase-2 Upgrade for HL-LHC, is that the large number of channels causes a surge in the computing load when clustering numerous digitized energy deposits (hits) in the reconstruction...
Autores principales: | Rovere, Marco, Chen, Ziheng, Di Pilato, Antonio, Pantaleo, Felice, Seez, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080903/ https://www.ncbi.nlm.nih.gov/pubmed/33937749 http://dx.doi.org/10.3389/fdata.2020.591315 |
Ejemplares similares
-
CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High-Energy Physics
por: Rovere, Marco, et al.
Publicado: (2020) -
GPU-based Clustering Algorithm for the CMS High Granularity Calorimeter
por: Chen, Ziheng, et al.
Publicado: (2020) -
A fast parallelized DBSCAN algorithm based on OpenMp for detection of criminals on streaming services
por: Mochurad, Lesia, et al.
Publicado: (2023) -
HPTMT Parallel Operators for High Performance Data Science and Data Engineering
por: Abeykoon, Vibhatha, et al.
Publicado: (2022) -
Adaptive granularity in tensors: A quest for interpretable structure
por: Pasricha, Ravdeep S., et al.
Publicado: (2022)