Cargando…
Gastric polyp detection in gastroscopic images using deep neural network
This paper presents the research results of detecting gastric polyps with deep learning object detection method in gastroscopic images. Gastric polyps have various sizes. The difficulty of polyp detection is that small polyps are difficult to detect from the background. We propose a feature extracti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081222/ https://www.ncbi.nlm.nih.gov/pubmed/33909671 http://dx.doi.org/10.1371/journal.pone.0250632 |
_version_ | 1783685596675309568 |
---|---|
author | Cao, Chanting Wang, Ruilin Yu, Yao zhang, Hui Yu, Ying Sun, Changyin |
author_facet | Cao, Chanting Wang, Ruilin Yu, Yao zhang, Hui Yu, Ying Sun, Changyin |
author_sort | Cao, Chanting |
collection | PubMed |
description | This paper presents the research results of detecting gastric polyps with deep learning object detection method in gastroscopic images. Gastric polyps have various sizes. The difficulty of polyp detection is that small polyps are difficult to detect from the background. We propose a feature extraction and fusion module and combine it with the YOLOv3 network to form our network. This method performs better than other methods in the detection of small polyps because it can fuse the semantic information of high-level feature maps with low-level feature maps to help small polyps detection. In this work, we use a dataset of gastric polyps created by ourselves, containing 1433 training images and 508 validation images. We train and validate our network on our dataset. In comparison with other methods of polyps detection, our method has a significant improvement in precision, recall rate, F1, and F2 score. The precision, recall rate, F1 score, and F2 score of our method can achieve 91.6%, 86.2%, 88.8%, and 87.2%. |
format | Online Article Text |
id | pubmed-8081222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-80812222021-05-06 Gastric polyp detection in gastroscopic images using deep neural network Cao, Chanting Wang, Ruilin Yu, Yao zhang, Hui Yu, Ying Sun, Changyin PLoS One Research Article This paper presents the research results of detecting gastric polyps with deep learning object detection method in gastroscopic images. Gastric polyps have various sizes. The difficulty of polyp detection is that small polyps are difficult to detect from the background. We propose a feature extraction and fusion module and combine it with the YOLOv3 network to form our network. This method performs better than other methods in the detection of small polyps because it can fuse the semantic information of high-level feature maps with low-level feature maps to help small polyps detection. In this work, we use a dataset of gastric polyps created by ourselves, containing 1433 training images and 508 validation images. We train and validate our network on our dataset. In comparison with other methods of polyps detection, our method has a significant improvement in precision, recall rate, F1, and F2 score. The precision, recall rate, F1 score, and F2 score of our method can achieve 91.6%, 86.2%, 88.8%, and 87.2%. Public Library of Science 2021-04-28 /pmc/articles/PMC8081222/ /pubmed/33909671 http://dx.doi.org/10.1371/journal.pone.0250632 Text en © 2021 Cao et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Cao, Chanting Wang, Ruilin Yu, Yao zhang, Hui Yu, Ying Sun, Changyin Gastric polyp detection in gastroscopic images using deep neural network |
title | Gastric polyp detection in gastroscopic images using deep neural network |
title_full | Gastric polyp detection in gastroscopic images using deep neural network |
title_fullStr | Gastric polyp detection in gastroscopic images using deep neural network |
title_full_unstemmed | Gastric polyp detection in gastroscopic images using deep neural network |
title_short | Gastric polyp detection in gastroscopic images using deep neural network |
title_sort | gastric polyp detection in gastroscopic images using deep neural network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081222/ https://www.ncbi.nlm.nih.gov/pubmed/33909671 http://dx.doi.org/10.1371/journal.pone.0250632 |
work_keys_str_mv | AT caochanting gastricpolypdetectioningastroscopicimagesusingdeepneuralnetwork AT wangruilin gastricpolypdetectioningastroscopicimagesusingdeepneuralnetwork AT yuyao gastricpolypdetectioningastroscopicimagesusingdeepneuralnetwork AT zhanghui gastricpolypdetectioningastroscopicimagesusingdeepneuralnetwork AT yuying gastricpolypdetectioningastroscopicimagesusingdeepneuralnetwork AT sunchangyin gastricpolypdetectioningastroscopicimagesusingdeepneuralnetwork |