Cargando…
Alisol A 24-acetate protects oxygen–glucose deprivation-induced brain microvascular endothelial cells against apoptosis through miR-92a-3p inhibition by targeting the B-cell lymphoma-2 gene
CONTEXT: Alisol A 24-acetate has been used to treat vascular diseases. However, the underlying mechanisms still remain unclear. OBJECTIVE: The present study evaluated the antiapoptotic effect of alisol A 24-acetate on brain microvascular endothelial cells (BMECs) and explored the underlying mechanis...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081307/ https://www.ncbi.nlm.nih.gov/pubmed/33905668 http://dx.doi.org/10.1080/13880209.2021.1912117 |
_version_ | 1783685614207500288 |
---|---|
author | Zhou, Yangjie Wei, Wei Shen, Julian Lu, Lu Lu, Taotao Wang, Hong Xue, Xiehua |
author_facet | Zhou, Yangjie Wei, Wei Shen, Julian Lu, Lu Lu, Taotao Wang, Hong Xue, Xiehua |
author_sort | Zhou, Yangjie |
collection | PubMed |
description | CONTEXT: Alisol A 24-acetate has been used to treat vascular diseases. However, the underlying mechanisms still remain unclear. OBJECTIVE: The present study evaluated the antiapoptotic effect of alisol A 24-acetate on brain microvascular endothelial cells (BMECs) and explored the underlying mechanisms. MATERIALS AND METHODS: BMECs were injured through oxygen -glucose deprivation (OGD) after alisol A 24-acetate treatment. Cell viability and half-maximal inhibitory concentration (IC(50)) were measured using CCK-8, whereas inflammatory factors and oxidative stress indicators were measured using enzyme linked immunosorbent assay. Cell invasion and wound healing assays were detected. Cell apoptosis was assessed using flow cytometry. B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X (Bax) expression were analyzed using Western blotting. Dual-luciferase assay was applied to detect target genes of miR-92a-3p. RESULT: Alisol A 24-acetate had an IC(50) of 98.53 mg/L and inhibited cell viability at concentrations over 50mg/L. OGD induced apoptosis and promoted miR-92a-3p overexpression in BMECs. However, alisol A 24-acetate treatment suppressed inflammation, improved migration and invasion abilities, increased Bcl-2 expression, inhibited Bax expression, and repressed apoptosis and miR92a-3p overexpression in OGD-induced BMECs. MiR-92a-3p overexpression promoted cell apoptosis and suppressed Bcl-2 expression, whereas its inhibitor reversed the tendency. Alisol A 24-acetate treatment relieved the effects of miR-92a-3p overexpression. Dual-luciferase assay confirmed that miR-92a-3p negatively regulated the Bcl-2 expression. CONCLUSIONS: These findings suggest that alisol A 24-acetate exerts antiapoptotic effects on OGD-induced BMECs through miR-92a-3p inhibition by targeting the Bcl-2 gene, indicating its potential for BMECs protection and as a novel therapeutic agent for the treatment of cerebrovascular disease. |
format | Online Article Text |
id | pubmed-8081307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-80813072021-05-13 Alisol A 24-acetate protects oxygen–glucose deprivation-induced brain microvascular endothelial cells against apoptosis through miR-92a-3p inhibition by targeting the B-cell lymphoma-2 gene Zhou, Yangjie Wei, Wei Shen, Julian Lu, Lu Lu, Taotao Wang, Hong Xue, Xiehua Pharm Biol Research Article CONTEXT: Alisol A 24-acetate has been used to treat vascular diseases. However, the underlying mechanisms still remain unclear. OBJECTIVE: The present study evaluated the antiapoptotic effect of alisol A 24-acetate on brain microvascular endothelial cells (BMECs) and explored the underlying mechanisms. MATERIALS AND METHODS: BMECs were injured through oxygen -glucose deprivation (OGD) after alisol A 24-acetate treatment. Cell viability and half-maximal inhibitory concentration (IC(50)) were measured using CCK-8, whereas inflammatory factors and oxidative stress indicators were measured using enzyme linked immunosorbent assay. Cell invasion and wound healing assays were detected. Cell apoptosis was assessed using flow cytometry. B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X (Bax) expression were analyzed using Western blotting. Dual-luciferase assay was applied to detect target genes of miR-92a-3p. RESULT: Alisol A 24-acetate had an IC(50) of 98.53 mg/L and inhibited cell viability at concentrations over 50mg/L. OGD induced apoptosis and promoted miR-92a-3p overexpression in BMECs. However, alisol A 24-acetate treatment suppressed inflammation, improved migration and invasion abilities, increased Bcl-2 expression, inhibited Bax expression, and repressed apoptosis and miR92a-3p overexpression in OGD-induced BMECs. MiR-92a-3p overexpression promoted cell apoptosis and suppressed Bcl-2 expression, whereas its inhibitor reversed the tendency. Alisol A 24-acetate treatment relieved the effects of miR-92a-3p overexpression. Dual-luciferase assay confirmed that miR-92a-3p negatively regulated the Bcl-2 expression. CONCLUSIONS: These findings suggest that alisol A 24-acetate exerts antiapoptotic effects on OGD-induced BMECs through miR-92a-3p inhibition by targeting the Bcl-2 gene, indicating its potential for BMECs protection and as a novel therapeutic agent for the treatment of cerebrovascular disease. Taylor & Francis 2021-04-27 /pmc/articles/PMC8081307/ /pubmed/33905668 http://dx.doi.org/10.1080/13880209.2021.1912117 Text en © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhou, Yangjie Wei, Wei Shen, Julian Lu, Lu Lu, Taotao Wang, Hong Xue, Xiehua Alisol A 24-acetate protects oxygen–glucose deprivation-induced brain microvascular endothelial cells against apoptosis through miR-92a-3p inhibition by targeting the B-cell lymphoma-2 gene |
title | Alisol A 24-acetate protects oxygen–glucose deprivation-induced brain microvascular endothelial cells against apoptosis through miR-92a-3p inhibition by targeting the B-cell lymphoma-2 gene |
title_full | Alisol A 24-acetate protects oxygen–glucose deprivation-induced brain microvascular endothelial cells against apoptosis through miR-92a-3p inhibition by targeting the B-cell lymphoma-2 gene |
title_fullStr | Alisol A 24-acetate protects oxygen–glucose deprivation-induced brain microvascular endothelial cells against apoptosis through miR-92a-3p inhibition by targeting the B-cell lymphoma-2 gene |
title_full_unstemmed | Alisol A 24-acetate protects oxygen–glucose deprivation-induced brain microvascular endothelial cells against apoptosis through miR-92a-3p inhibition by targeting the B-cell lymphoma-2 gene |
title_short | Alisol A 24-acetate protects oxygen–glucose deprivation-induced brain microvascular endothelial cells against apoptosis through miR-92a-3p inhibition by targeting the B-cell lymphoma-2 gene |
title_sort | alisol a 24-acetate protects oxygen–glucose deprivation-induced brain microvascular endothelial cells against apoptosis through mir-92a-3p inhibition by targeting the b-cell lymphoma-2 gene |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081307/ https://www.ncbi.nlm.nih.gov/pubmed/33905668 http://dx.doi.org/10.1080/13880209.2021.1912117 |
work_keys_str_mv | AT zhouyangjie alisola24acetateprotectsoxygenglucosedeprivationinducedbrainmicrovascularendothelialcellsagainstapoptosisthroughmir92a3pinhibitionbytargetingthebcelllymphoma2gene AT weiwei alisola24acetateprotectsoxygenglucosedeprivationinducedbrainmicrovascularendothelialcellsagainstapoptosisthroughmir92a3pinhibitionbytargetingthebcelllymphoma2gene AT shenjulian alisola24acetateprotectsoxygenglucosedeprivationinducedbrainmicrovascularendothelialcellsagainstapoptosisthroughmir92a3pinhibitionbytargetingthebcelllymphoma2gene AT lulu alisola24acetateprotectsoxygenglucosedeprivationinducedbrainmicrovascularendothelialcellsagainstapoptosisthroughmir92a3pinhibitionbytargetingthebcelllymphoma2gene AT lutaotao alisola24acetateprotectsoxygenglucosedeprivationinducedbrainmicrovascularendothelialcellsagainstapoptosisthroughmir92a3pinhibitionbytargetingthebcelllymphoma2gene AT wanghong alisola24acetateprotectsoxygenglucosedeprivationinducedbrainmicrovascularendothelialcellsagainstapoptosisthroughmir92a3pinhibitionbytargetingthebcelllymphoma2gene AT xuexiehua alisola24acetateprotectsoxygenglucosedeprivationinducedbrainmicrovascularendothelialcellsagainstapoptosisthroughmir92a3pinhibitionbytargetingthebcelllymphoma2gene |